matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenSchnittwinkel von Kurven
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Partielle Differentialgleichungen" - Schnittwinkel von Kurven
Schnittwinkel von Kurven < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittwinkel von Kurven: Tipps
Status: (Frage) beantwortet Status 
Datum: 08:33 Mi 14.09.2011
Autor: Mathegirl

Kann mir jemand an einem Beispiel erklären, wie man den Schnittwinkel von 2 Kurven berechnet, besser gesagt wie man in die  Formel einsetzt?

[mm] cos\gamma= \bruch{}{\parallel f´(t_1)\parallel * \parallel g´(t_2)\parallel} [/mm]

Vor allem wie berechnet man den Zähler?

Leider weiß ich nicht wie man den Strich oben zur Ableitung einfügt, also alle f und g sollen die erste partielle Ableitung darstellen.


MfG
Mathegirl

        
Bezug
Schnittwinkel von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Mi 14.09.2011
Autor: Diophant

Hallo,

da geht es ja wohl um 3D-Kuven, die durch vektorwertige Funktionen beschrieben sind. Dann steht einfach im Zähler das Skalarprodukt der beiden Ableitungen, im Nenner steht das Produkt der Beträge. Wo genau hapert es denn bzw. hättest du uns eine konkrete Aufgabe?

Gruß, Diophant

Bezug
        
Bezug
Schnittwinkel von Kurven: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:13 Mi 14.09.2011
Autor: schachuzipus

Hallo Mathegirl,


> Kann mir jemand an einem Beispiel erklären, wie man den
> Schnittwinkel von 2 Kurven berechnet, besser gesagt wie man
> in die  Formel einsetzt?
>  
> [mm]cos\gamma= \bruch{}{\parallel f´(t_1)\parallel * \parallel g´(t_2)\parallel}[/mm]
>  
> Vor allem wie berechnet man den Zähler?
>
> Leider weiß ich nicht wie man den Strich oben zur
> Ableitung einfügt,

Das geht mit der Tastenkombination "Shift" und "#"

f'(x)


Gruß

schachuzipus


Bezug
        
Bezug
Schnittwinkel von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Mi 14.09.2011
Autor: hippias

Hallo Mathegirl!

Ein Beispiel:
$f(t):=( 1,t, [mm] t^{2})$ [/mm] und $g(t):= (cos(t), sin(3t), sin(4t))$. Dann ist schneiden $f$ und $g$ sich and der Stelle $t=0$. Es gilt $f'(0)= (0,1,0)$ und $g'(0)= (0, 3,4)$. Das [mm] $\parallel .\parallel$ [/mm] meint wohl die euklidische Norm, also [mm] $\parallel a\parallel= \sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}$. [/mm] Es folgt [mm] $\parallel f'(0)\parallel= [/mm] 1$ und [mm] $\parallel g'(0)\parallel= [/mm] 5$. Im Zaehler des Bruches steht das uebliche Skalarprodukt: $<a, b>= [mm] a_{1}b_{1}+ a_{2}b_{2}+ a_{3}b_{3}$. [/mm] Damit gilt hier [mm] $cos\gamma= \bruch{}{\parallel f'(0)\parallel * \parallel g'(0)\parallel}= \bruch{3}{1 * 5}$. [/mm]

O.K.?



Bezug
                
Bezug
Schnittwinkel von Kurven: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:11 Do 15.09.2011
Autor: Mathegirl

Vielen Dank!!

An dem beispiel konnte ich das super nachvollziehen und hab es jetzt verstanden!!
Vielen Dank!! :)


MfG
Mathegirl

Bezug
                
Bezug
Schnittwinkel von Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Di 26.06.2012
Autor: paula_88

Hallo,
ich war auch gerade auf der Suche nach einem Beispiel zur Berechnung von Schnittwinkeln und habe zu diesem hier gleich mal eine Frage:

> Ein Beispiel:
>  [mm]f(t):=( 1,t, t^{2})[/mm] und [mm]g(t):= (cos(t), sin(3t), sin(4t))[/mm].
> Dann ist schneiden [mm]f[/mm] und [mm]g[/mm] sich and der Stelle [mm]t=0[/mm].  Wie kann ich diesen Schnittpunkt errechnen? (Falls er mal nicht bei 0 liegt und weniger ersichtlich ist??)

Es gilt

> [mm]f'(0)= (0,1,0)[/mm] und [mm]g'(0)= (0, 3,4)[/mm]. Das [mm]\parallel .\parallel[/mm]
> meint wohl die euklidische Norm, also [mm]\parallel a\parallel= \sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}[/mm].
> Es folgt [mm]\parallel f'(0)\parallel= 1[/mm] und [mm]\parallel g'(0)\parallel= 5[/mm].

Ich setze in die Ableitungen etc. doch immer den Schnittpunkt ein, oder?


> Im Zaehler des Bruches steht das uebliche Skalarprodukt:
> [mm]= a_{1}b_{1}+ a_{2}b_{2}+ a_{3}b_{3}[/mm]. Damit gilt hier
> [mm]cos\gamma= \bruch{}{\parallel f'(0)\parallel * \parallel g'(0)\parallel}= \bruch{3}{1 * 5}[/mm].

Dann wäre mir alles zu 100% klar, vielen Dank :-)

Bezug
                        
Bezug
Schnittwinkel von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Di 26.06.2012
Autor: angela.h.b.


> Hallo,
>  ich war auch gerade auf der Suche nach einem Beispiel zur
> Berechnung von Schnittwinkeln und habe zu diesem hier
> gleich mal eine Frage:
>  
> > Ein Beispiel:
>  >  [mm]f(t):=( 1,t, t^{2})[/mm] und [mm]g(t):= (cos(t), sin(3t), sin(4t))[/mm].
> > Dann ist schneiden [mm]f[/mm] und [mm]g[/mm] sich and der Stelle [mm]t=0[/mm].
> Wie
> kann ich diesen Schnittpunkt errechnen? (Falls er mal nicht
> bei 0 liegt und weniger ersichtlich ist??)

Hallo,

indem Du f(t)=g(t) irgendwie löst.

>  
> Es gilt
> > [mm]f'(0)= (0,1,0)[/mm] und [mm]g'(0)= (0, 3,4)[/mm]. Das [mm]\parallel .\parallel[/mm]
> > meint wohl die euklidische Norm, also [mm]\parallel a\parallel= \sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}[/mm].
> > Es folgt [mm]\parallel f'(0)\parallel= 1[/mm] und [mm]\parallel g'(0)\parallel= 5[/mm].
>
> Ich setze in die Ableitungen etc. doch immer den
> Schnittpunkt ein, oder?

Ja, das t, für das f(t)=g(t).

>  
>
> > Im Zaehler des Bruches steht das uebliche Skalarprodukt:
> > [mm]= a_{1}b_{1}+ a_{2}b_{2}+ a_{3}b_{3}[/mm]. Damit gilt hier
> > [mm]cos\gamma= \bruch{}{\parallel f'(0)\parallel * \parallel g'(0)\parallel}= \bruch{3}{1 * 5}[/mm].

Ja.

LG Angela

>  
> Dann wäre mir alles zu 100% klar, vielen Dank :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]