matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraSchnittwinkel und Schnittpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Schnittwinkel und Schnittpunkt
Schnittwinkel und Schnittpunkt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittwinkel und Schnittpunkt: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:25 Sa 20.05.2006
Autor: biene0601

Aufgabe
Gegeben sind die Gerade  [mm] \vec{x}= \vektor{-7 \\ 13 \\ 7}+ \vektor{3 \\ 4 \\ 1} [/mm] und die Ebene x-y+3z=13.

Berechnen Sie den Schnittwinkel  [mm] \alpha [/mm] und den Schnittpunkt S der Geraden g zur Ebene E (Teilergebnis: S(11,37,13)).

Hallo,

den Schnittwinkel habe ich folgendermaßen berechnet:

Normalenvektor der Ebene:  [mm] \vec{n}= \vektor{1 \\ -1 \\ 3} [/mm]
Richtungsvektor der Gerade: [mm] \vec{c}= \vektor{3 \\ 4 \\ 1} [/mm]

[mm] \vec{n} \* \vec{c}= \vmat{ \vec{n} } \* \vmat{ \vec{c} }\*cos \alpha [/mm]

Umgestellt sieht das Ganze dann so aus:

cos [mm] \alpha= \bruch{\vec{n} \* \vec{c}}{\vmat{ \vec{n} } \* \vmat{ \vec{c} }} [/mm]

Mein Schnittwinkel beträgt: 83,21° Kann das jemand bestätigen?

So und nun zu dem Schnittpunkt... ich bin mir nicht sicher wie ich den Schnittpunkt ausrechnen soll.
Ich habe schon versucht beliebige Punkte in die Ebene einzusetzen und mit diesen Punkten eine Vektorgleichung erstellt. Danach diese Gleichung mit der Gradengleichung gleichgesetzt und den Schnittpunkt ausgerechnet.... nur kam da nie das Ergebnis, welches vorgegeben war, raus. :(

Als zweite Idee habe ich die Schnittpunkte der Ebene mit den Koordinatenachsen ausgerechnet (über die Achsenabschnittsgleichung) und dann mit diesen Punkten eine Ebenengleichung erstellt. Bin dann mit dem gleichen Schema wie oben fortgefahren, kam jedoch auch nicht der Schnittpunkt raus.

Habt ihr eine Idee wie man das noch anstellen könnte?

Liebe Grüße und vielen Dank im Voraus,
Biene

        
Bezug
Schnittwinkel und Schnittpunkt: Schnittpunkt
Status: (Antwort) fertig Status 
Datum: 12:34 Sa 20.05.2006
Autor: Loddar

Hallo Biene!


Deinen Schnittwinkel habe ich auch erhalten [ok] !


Für den Schnittpunkt schreiben wir die Ebene zunächst um:

$E \ : \ x-y+3z \ = \ [mm] \blue{\vektor{x\\y\\z}}*\vektor{1\\-1\\3} [/mm] \ = \ 13$


Und nun [mm]\vec{x}= \vektor{-7 \\ 13 \\ 7}+r*\vektor{3 \\ 4 \\ 1}[/mm] in die Ebenengleichung einsetzen:

[mm] $\left[\blue{\vektor{-7 \\ 13 \\ 7}+r*\vektor{3 \\ 4 \\ 1}}\right]*\vektor{1\\-1\\3} [/mm] \ = \ [mm] \vektor{-7 \\ 13 \\ 7}*\vektor{1\\-1\\3}+r*\vektor{3 \\ 4 \\ 1}*\vektor{1\\-1\\3} [/mm] \ = \ 13$


Hieraus nun den Parameter $r_$ bestimmen und wieder in die Geradengleichung einsetzen.


Gruß
Loddar


Bezug
                
Bezug
Schnittwinkel und Schnittpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 Sa 20.05.2006
Autor: biene0601

Wow, vielen Dank. :) Hab den Schnittpunkt rausbekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]