matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenSchnittwinkel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Schnittwinkel
Schnittwinkel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittwinkel: Tipp/Korrektur
Status: (Frage) beantwortet Status 
Datum: 01:58 Di 14.02.2012
Autor: al3pou

Aufgabe
Für welches a bilden der Lösungsvektor und die x-Achse einen
Winkel von [mm] \bruch{\pi}{4}? [/mm]


Hallo,

den Lösungsvektor habe ich schon vorher berechnet und der
stimmt auch so.

   [mm] \vec{x} [/mm] = (a, [mm] \bruch{1}{a})^{T} [/mm]

Die Formel für den Schnittwinkel ist:

   cos [mm] \gamma [/mm] = [mm] \bruch{|\vec{a} \circ \vec{b}|}{|\vec{a}|*|\vec{b}|} [/mm]

Jetzt setze ich alles ein und erhalte dann:

   cos [mm] \gamma [/mm] = [mm] \bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}} [/mm]

dann würde ich ja schreiben um den Winkel zu errechnen:

  [mm] \gamma [/mm] = [mm] arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}}) [/mm]

  [mm] \bruch{\pi}{4} [/mm] = [mm] arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}}) [/mm]

ich stelle mir nur die Frage, ob ich es so ausrechnen soll,
oder ob es eurer Meinung nach reichen würde es so zu
schreiben und dann einfach die Lösung abzulesen, da wir in
unserer Klausur ein DIN A5 Heft benutzen dürfen und da auch
eine Winkeltabelle drin haben dürfen.
Ich wüsste aber auch nicht genau, wie ich jetzt weiter
rechnen soll. a müsste [mm] \ [/mm]

Gruß
al3pou


        
Bezug
Schnittwinkel: Antwort
Status: (Antwort) fertig Status 
Datum: 03:32 Di 14.02.2012
Autor: MathePower

Hallo al3pou,

> Für welches a bilden der Lösungsvektor und die x-Achse
> einen
> Winkel von [mm]\pi\4?[/mm]
>  Hallo,
>  
> den Lösungsvektor habe ich schon vorher berechnet und der
> stimmt auch so.
>  
> [mm]\vec{x}[/mm] = (a, [mm]\bruch{1}{a})^{T}[/mm]
>  
> Die Formel für den Schnittwinkel ist:
>  
> cos [mm]\gamma[/mm] = [mm]\bruch{|\vec{a} \circ \vec{b}|}{|\vec{a}|*|\vec{b}|}[/mm]
>  
> Jetzt setze ich alles ein und erhalte dann:
>  
> cos [mm]\gamma[/mm] = [mm]\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}}[/mm]
>  
> dann würde ich ja schreiben um den Winkel zu errechnen:
>  
> [mm]\gamma[/mm] = [mm]arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}})[/mm]
>  
> [mm]\bruch{\pi}{4}[/mm] = [mm]arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}})[/mm]
>  


Laut Aufgabe handelt es sich um den Winkel "[mm]\pi[/mm]" statt "[mm]\bruch{\pi}{4}[/mm]".


> ich stelle mir nur die Frage, ob ich es so ausrechnen soll,
> oder ob es eurer Meinung nach reichen würde es so zu
> schreiben und dann einfach die Lösung abzulesen, da wir in
> unserer Klausur ein DIN A5 Heft benutzen dürfen und da
> auch
> eine Winkeltabelle drin haben dürfen.
>  Ich wüsste aber auch nicht genau, wie ich jetzt weiter
> rechnen soll. a müsste [mm]\[/mm]

>


Sofern der Winkelwert in der Tabelle vorhanden ist,
kannst Du das ausrechnen.

  

> Gruß
>  al3pou
>  


Gruss
MathePower

Bezug
        
Bezug
Schnittwinkel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Di 14.02.2012
Autor: fred97


> Für welches a bilden der Lösungsvektor und die x-Achse
> einen
> Winkel von [mm]\pi\4?[/mm]

Im Quelltext sehe ich, dass da  [mm]\pi/4[/mm] steht.


>  Hallo,
>  
> den Lösungsvektor habe ich schon vorher berechnet und der
> stimmt auch so.
>  
> [mm]\vec{x}[/mm] = (a, [mm]\bruch{1}{a})^{T}[/mm]
>  
> Die Formel für den Schnittwinkel ist:
>  
> cos [mm]\gamma[/mm] = [mm]\bruch{|\vec{a} \circ \vec{b}|}{|\vec{a}|*|\vec{b}|}[/mm]
>  
> Jetzt setze ich alles ein und erhalte dann:
>  
> cos [mm]\gamma[/mm] = [mm]\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}}[/mm]
>  
> dann würde ich ja schreiben um den Winkel zu errechnen:
>  
> [mm]\gamma[/mm] = [mm]arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}})[/mm]
>  
> [mm]\bruch{\pi}{4}[/mm] = [mm]arccos(\bruch{a}{\wurzel{a^{2} + \bruch{1}{a^{2}}}})[/mm]
>  
> ich stelle mir nur die Frage, ob ich es so ausrechnen soll,
> oder ob es eurer Meinung nach reichen würde es so zu
> schreiben und dann einfach die Lösung abzulesen, da wir in
> unserer Klausur ein DIN A5 Heft benutzen dürfen und da
> auch
> eine Winkeltabelle drin haben dürfen.
>  Ich wüsste aber auch nicht genau, wie ich jetzt weiter
> rechnen soll. a müsste [mm]\[/mm]


ich würde es so machen: weil die 1. und die 2. Komponente von (a, $ [mm] \bruch{1}{a})^{T} [/mm] $  dasselbe Vorzeichen haben und weil (a, $ [mm] \bruch{1}{a})^{T} [/mm] $  mit der x-Achse einen Winkel von 45° einschließt, hat (a, $ [mm] \bruch{1}{a})^{T} [/mm] $   die Gestalt

                    (a, $ [mm] \bruch{1}{a})^{T} [/mm] $ = [mm] t(1,1)^T [/mm] mit t [mm] \in \IR. [/mm]

Also gilt: a=1/a.

Das liefert a=1 oder a=-1

FRED

>  
> Gruß
>  al3pou
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]