matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenSchnittstelle y-Achse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Schnittstelle y-Achse
Schnittstelle y-Achse < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittstelle y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 So 12.02.2012
Autor: mbau16

Aufgabe
Ermitteln Sie den Schnittpunkt mit der y-Achse:

[mm] y=\bruch{x^{3}}{x^{2}-4} [/mm]

Moin,

kurze Frage an Euch.

[mm] y=\bruch{x^{3}}{x^{2}-4} [/mm]

[mm] x\not=\pm2 [/mm]

[mm] D=\IR\backslash\{\pm2\} [/mm]

Schnittpunkt x-Achse

[mm] x^{3}=0-> [/mm] dreifache Nullstelle

Ich hoffe, bis hier ist alles korrekt!

Nun zu meiner Frage. Um den Schnittpunkt mit der y-Achse zu ermitteln muss ich die 0 in die Funktion einsetzen. Muss ich die 0 nur in den Zähler, oder in die Gesamtfunktion einsetzen?

Vielen Dank!

Gruß

mbau16

        
Bezug
Schnittstelle y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 So 12.02.2012
Autor: M.Rex

Hallo

> Ermitteln Sie den Schnittpunkt mit der y-Achse:
>  
> [mm]y=\bruch{x^{3}}{x^{2}-4}[/mm]
>  Moin,
>  
> kurze Frage an Euch.
>  
> [mm]y=\bruch{x^{3}}{x^{2}-4}[/mm]
>  
> [mm]x\not=\pm2[/mm]
>  
> [mm]D=\IR\backslash\{\pm2\}[/mm]

Korrekt.

>  
> Schnittpunkt x-Achse
>  
> [mm]x^{3}=0->[/mm] dreifache Nullstelle

[]Mehrfache Nullstellen gibt es nur bei Polynomfunktionen, f(x) ist hier aber eine []Gebrochen-Rationale Funktion.



>  
> Ich hoffe, bis hier ist alles korrekt!
>  
> Nun zu meiner Frage. Um den Schnittpunkt mit der y-Achse zu
> ermitteln muss ich die 0 in die Funktion einsetzen. Muss
> ich die 0 nur in den Zähler, oder in die Gesamtfunktion
> einsetzen?

Eigenlich in die  Gesamtfunktion, da hier aber der Zähler schon Null wird, und 0/...=0 und die 0 im Definitionsbereich liegt, kann man hier recht direkt sagen, dass f(0)=0.

>  
> Vielen Dank!
>  
> Gruß
>  
> mbau16

Marius


Bezug
                
Bezug
Schnittstelle y-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 So 12.02.2012
Autor: mbau16

Danke für die schnelle Antwort und den hilfreichen Link. Noch ne kurze Frage. Also habe ich hier ne simple einfache Nullstehe, wenn ich es recht verstehe?
>  >  
> > [mm]y=\bruch{x^{3}}{x^{2}-4}[/mm]
>  >  
> > [mm]x\not=\pm2[/mm]
>  >  
> > [mm]D=\IR\backslash\{\pm2\}[/mm]
>  
> Korrekt.
>  
> >  

> > Schnittpunkt x-Achse
>  >  
> > [mm][mm] x^{3}=0 [/mm]
>  
> []Mehrfache Nullstellen
> gibt es nur bei Polynomfunktionen, f(x) ist hier aber eine
> []Gebrochen-Rationale Funktion.
>  
>
>
> >  

> > Ich hoffe, bis hier ist alles korrekt!
>  >  
> > Nun zu meiner Frage. Um den Schnittpunkt mit der y-Achse zu
> > ermitteln muss ich die 0 in die Funktion einsetzen. Muss
> > ich die 0 nur in den Zähler, oder in die Gesamtfunktion
> > einsetzen?
>  
> Eigenlich in die  Gesamtfunktion, da hier aber der Zähler
> schon Null wird, und 0/...=0 und die 0 im
> Definitionsbereich liegt, kann man hier recht direkt sagen,
> dass f(0)=0.
>  
> >  

> > Vielen Dank!
>  >  
> > Gruß


Bezug
                        
Bezug
Schnittstelle y-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 So 12.02.2012
Autor: M.Rex

Hallo

> Danke für die schnelle Antwort und den hilfreichen Link.
> Noch ne kurze Frage. Also habe ich hier ne simple einfache
> Nullstehe, wenn ich es recht verstehe?

Es ist eine Nullstelle, mehr nicht. Das sie zufällig noch andere Eigenschaften hat, ist hier nebensächlich.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]