Schnittpunkte/Nullstellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:25 Di 29.04.2014 | Autor: | Odyssey |
Aufgabe | Skizzieren Sie die Graphen folgender Funktionen und bestimmen Sie die Schnittpunkte mit den Koordinatenachsen.
a) f(x) = (x - [mm] 1)^2 [/mm] - 4 |
Moin moin liebe Leute,
ich habe eine Problem mit der Nullstellenbestimmung. Während die Bestimmung des Schnittpunktes mit der y-Achse verständlich war, habe ich ein Problem mit der Bestimmung des Schnittpunkes mit der x-Achse.
Ich habe es mit der binomischen Formeln versucht:
[mm] x^2-2x*-1+1-4 [/mm] = 0, doch wie man [mm] x^2 [/mm] mit 2x vereinbart, ist mir völlig unverständlich. In den Lösungen zu den Aufgaben finde für Nullstellen x1 = 3 und x2 = -1 vor. Leider verstehe ich nicht, wie ich zu dieser Lösung kommen kann und darüber hinaus, wie man aus dieser Funktion zwei Nullstellen berechnet?
Beste Grüße Odyssey
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:42 Di 29.04.2014 | Autor: | Fulla |
Hallo Odyssey,
> Skizzieren Sie die Graphen folgender Funktionen und
> bestimmen Sie die Schnittpunkte mit den Koordinatenachsen.
> a) f(x) = (x - [mm]1)^2[/mm] - 4
> Moin moin liebe Leute,
> ich habe eine Problem mit der Nullstellenbestimmung.
> Während die Bestimmung des Schnittpunktes mit der y-Achse
> verständlich war, habe ich ein Problem mit der Bestimmung
> des Schnittpunkes mit der x-Achse.
> Ich habe es mit der binomischen Formeln versucht:
> [mm]x^2-2x*\red{-1}+1-4[/mm] = 0, doch wie man [mm]x^2[/mm] mit 2x vereinbart, ist
> mir völlig unverständlich. In den Lösungen zu den
> Aufgaben finde für Nullstellen x1 = 3 und x2 = -1 vor.
> Leider verstehe ich nicht, wie ich zu dieser Lösung kommen
> kann und darüber hinaus, wie man aus dieser Funktion zwei
> Nullstellen berechnet?
Zur Bestimmung der Nullstellen gibt es verschiedene Möglichkeiten. Eine davon ist, die Funktion in die Form [mm]f(x)=a*x^2+b*x+c[/mm] zu bringen und dann eine Lösungsformel zu verwenden.
Dabei ist dir ein kleiner Fehler unterlaufen: die "-1", die ich in der Formel oben rot markiert habe, muss eine "1" sein, also das Minuszeichen ist zuviel.
Es ist also [mm]f(x)=(x-1)^2-4=x^2-2x+1-4=x^2-2x-3=0[/mm] zu lösen. Dafür gibt es Lösungsformeln - manche arbeiten lieber mit der sog. Mitternachtsformel (auch abc-Formel genannt), andere nehmen die p-q-Formel... Such dir eine aus.
Eine andere Möglichkeit ist es, die Klammer erstmal stehen zu lassen und die Gleichung [mm](x-1)^2-4=0[/mm] umzuformen:
[mm](x-1)^2-4=0\quad\Longleftrightarrow\quad (x-1)^2=4\quad\Longleftrightarrow\quad x-1=\pm 2\quad\Longleftrightarrow\quad x=1\pm 2[/mm]
Lieben Gruß,
Fulla
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:56 Fr 02.05.2014 | Autor: | Odyssey |
PQ-Formel natürlich! Vielen Dank, für die umfangreiche und schnelle Hilfe! :)
|
|
|
|