matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenSchnittpunktberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Schnittpunktberechnung
Schnittpunktberechnung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunktberechnung: Korrektur und Tipps zum b-Teil
Status: (Frage) beantwortet Status 
Datum: 19:51 Mi 16.01.2008
Autor: LadyVal

Aufgabe
Näher betrachtet werden soll die Reflexion eines Lichtstrahls am Rückspiegel eines Fahrzeugs. Die Punkte A (3/0/0) und C (0/4/2) bilden die gegenüberliegenden Eckpunkte des rechteckigen Spiegels in einem kartesischen Koordinatensystem mit der Längeneinheit 1cm. Der Punkt B ergibt sich aus der senkrechten Projektion der Strecke AC entlang der
[mm] x_{3}-Achse [/mm] in die [mm] x_{1}x_{2}-Ebene. [/mm]

a) Ermitteln Sie die Koordinaten der anderen beiden Eckpunkte B und D.
    Veranschaulichen Sie die Lage des Rückspiegels in einem kartesischen
    Koordinatensystem (Maßstab: 1 cm im Koordinatensystem entspreche real 2,5cm).
    Bestimmen Sie eine Koordinatengleichung der Ebene E, in der sich der Rückspiegel  
    befindet.
    (Teilergebnis E : 4x1 + 3x2 -12 = 0)
    Lässt sich die besondere Lage des Rückspiegels auch an der von Ihnen ermittelten    
    Koordinatenform der Ebene E ablesen? Begründen Sie Ihre Antwort!

b) Von einer als punktförmig angenommenen Motorradlampe fällt nun ein Lichtstrahl  
    geradlinig durch die Heckscheibe auf den Rückspiegel des Fahrzeugs. Die Lampe
    befindet sich im Punkt L (186/781/1). Im Punkt M (1,5/2/1) des Rückspiegels wird der
    ankommende Lichtstrahl reflektiert.
    Zeigen Sie, dass M der Mittelpunkt des rechteckigen Rückspiegels ist.

    Die rechte „Pupillenfläche“ des Autofahrers möge sich vollständig in der Ebene
    F :  [mm] 4x_{1} [/mm] + [mm] 3x_{2} [/mm] -87 = 0 befinden.
    In welchem Punkt P trifft der reflektierte Lichtstrahl auf die Pupille?
    Welche Entfernung hat die rechte Pupille des Fahrers vom Punkt M?
    Wie groß ist der Einfallswinkel des von der Motorradlampe am Rückspiegel    
    ankommenden Lichtstrahls?
    (Hinweis: In der Physik versteht man unter dem Einfallswinkel den Winkel zwischen dem    
    einfallenden Lichtstrahl und dem Lot)
    Zeigen Sie, dass das Reflexionsgesetz: Einfallswinkel = Ausfallswinkel hier erfüllt ist.

    Das Licht legt eine Strecke von fast 300.000 km pro Sekunde zurück.
    Berechnen Sie die Zeit, die das Licht von der Motorradlampe bis zur Pupille benötigt.
    (Ergebnis bitte in der Einheit „Nanosekunde“ (=1 · [mm] 10x^{-9} [/mm] s) angeben.)
    Vergleichen Sie Ihr Ergebnis mit der Reaktionszeit eines Menschen von etwa 1 s.

Meine Frage bezieht sich auf den Teil b) der Aufgabenstellung - im speziellen auf die Frage nach den Koordinaten des Punktes P.
Ich weiß, dass F parallel ist zu E.
Somit suche ich den Schnittpunkt R der Geraden g durch die Punkte L und M mit der Ebene F.
Der Schnittpunkt der Geraden l durch den Punkt senkrecht zu beiden Ebenen liefert T.
Da das Gesetz "Einfallswinkel = Ausfallswinkel" gilt, ist [mm] \overline{RT} [/mm] = [mm] \overline{PT}. [/mm]
Somit gilt: [mm] \overrightarrow{OP} [/mm] = [mm] \overrightarrow{OR}+2\overrightarrow{RT} [/mm]
Das ist mein Ansatz und der ist soweit richtig, nicht wahr?

Wenn ich jetzt eine Geradengleichung fuer g aufstelle, nehme ich doch beispielsweise [mm] \overrightarrow{OM} [/mm] als Stützvektor und [mm] \overrightarrow{MP} [/mm] als Richtungsvektor, was dann liefert:
[mm] g:\vec{x}=\vektor{1,5 \\ 2 \\ 1} [/mm] + t [mm] \vektor{184,5 \\ 779 \\ 0} [/mm]
Setze ich nun g in die Gleichung fuer F ein, erhalte ich:
4(1,5+184,5t)+3(2+779t)=87 und letztlich einen sehr krummen Wert fuer t, was zur folge hat, dass mein Schnittpunkt R ebenfalls aeußerst krumm wird. In der Musterlösung steht aber: R (6/21/1).
Wo ist denn bei meinem Ansatz bzw. meine Rechnung der Fehler?
Danke für Eure Hilfe!!





        
Bezug
Schnittpunktberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:35 Do 17.01.2008
Autor: weduwe

die einfachste erklärung ist wohl: du hast dich verrechnet.

tipp: dividiere die komponenten des richtungsvektor durch 20.5, damit hast du
[mm] \vec{x}=\vektor{1.5\\2\\1}+t\vektor{9\\38\\0} [/mm]
und das in F eingesetzt ergibt [mm] t=\frac{1}{2} [/mm] und damit [mm]R(6/21/1)[/mm]

Bezug
                
Bezug
Schnittpunktberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:25 Do 17.01.2008
Autor: LadyVal

dankeschoen! ;-)

ich hab mich in der tat verrechnet :/
immer an ein und derselben stelle ohne dass es mir aufgefallen ist.
*grummel*


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]