matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeSchnittpunkt zweier Kreise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Schnittpunkt zweier Kreise
Schnittpunkt zweier Kreise < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt zweier Kreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Fr 09.02.2007
Autor: Sippox

Guten Abend,

ich möchte gerne den Schnittpunkt der folgenden zwei Kreise berechnen:

k1: [mm] 2.5^{2}=(x-7)^{2}+(y-2)^{2} [/mm]
k2: [mm] 2.5^{2}=(x-3)^{2}+(y-3)^{2} [/mm]

Zunächst habe ich die klammern aufgelöst, dann nach 0 umgestellt und gleichgesetzt.
Da kam folgendes raus: y=4x-17,5

Das habe ich dann in k1 eingesetzt, aber ich bekam dann bei der PQ Formel eine negative Zahl unter der Wurzel raus.
Ist mein Rechenweg falsch?

MfG

Sippox

        
Bezug
Schnittpunkt zweier Kreise: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Fr 09.02.2007
Autor: Stefan-auchLotti


> Guten Abend,

[mm] $\bffamily \text{Hi,}$ [/mm]

>  
> ich möchte gerne den Schnittpunkt der folgenden zwei Kreise
> berechnen:
>  
> k1: [mm]2.5^{2}=(x-7)^{2}+(y-2)^{2}[/mm]
>  k2: [mm]2.5^{2}=(x-3)^{2}+(y-3)^{2}[/mm]
>  
> Zunächst habe ich die klammern aufgelöst, dann nach 0
> umgestellt und gleichgesetzt.
>  Da kam folgendes raus: y=4x-17,5
>  
> Das habe ich dann in k1 eingesetzt, aber ich bekam dann bei
> der PQ Formel eine negative Zahl unter der Wurzel raus.
>  Ist mein Rechenweg falsch?
>  

[mm] $\bffamily \text{Ich hab' jetzt nicht die gesamte Rechnung durchgeführt, schick' doch mal deinen Rechenweg.}$ [/mm]

> MfG
>  
> Sippox

[mm] $\bffamily \text{Stefan.}$ [/mm]

Bezug
                
Bezug
Schnittpunkt zweier Kreise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Fr 09.02.2007
Autor: Sippox

ausgeklammert:

I  [mm] x^{2}-14x+49+y^{2}-4y+4 [/mm]
II  [mm] x^{2}-6x+9+y^{2}-6y+9 [/mm]    | gleichsetzen

[mm] x^{2}-14x+49+y^{2}-4y+4=x^{2}-6x+9+y^{2}-6y+9 [/mm]
-8x+35+2y=0
y=4x-17,5  | eingesetzt in II

[mm] x^{2}-6x+9+(4x-17,5)^{2}-6*(4x-17,5)+9=x^{2}-6x+9+16x^2-140x+306,25-24x+105+9= [/mm]
[mm] 17x^{2}-170x+429,25 [/mm]

[mm] 0=17x^{2}-170x+429,25 [/mm]
[mm] 0=x^{2}-\bruch{170x}{17}+\bruch{429,25}{17} [/mm]  | PQ Formel

[mm] x_{1,2}=\bruch{170x}{34} [/mm] +- [mm] \wurzel{(-\bruch{170x}{34})^{2}-\bruch{429,25}{17}} [/mm]  => in der Klammer steht jetzt [mm] \wurzel{-0,25} [/mm]

Sippox




Bezug
                        
Bezug
Schnittpunkt zweier Kreise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Sa 10.02.2007
Autor: Stefan-auchLotti


> ausgeklammert:
>  
> I  [mm]x^{2}-14x+49+y^{2}-4y+4[/mm]
>  II  [mm]x^{2}-6x+9+y^{2}-6y+9[/mm]    | gleichsetzen
>  
> [mm]x^{2}-14x+49+y^{2}-4y+4=x^{2}-6x+9+y^{2}-6y+9[/mm]
>  -8x+35+2y=0
>  y=4x-17,5  | eingesetzt in II
>  
> [mm]x^{2}-6x+9+(4x-17,5)^{2}-6*(4x-17,5)+9=x^{2}-6x+9+16x^2-140x+306,25-24x+105+9=[/mm]
>  [mm]17x^{2}-170x+429,25[/mm]
>  
> [mm]0=17x^{2}-170x+429,25[/mm]
>  [mm]0=x^{2}-\bruch{170x}{17}+\bruch{429,25}{17}[/mm]  | PQ Formel
>  
> [mm]x_{1,2}=\bruch{170x}{34}[/mm] +-
> [mm]\wurzel{(-\bruch{170x}{34})^{2}-\bruch{429,25}{17}}[/mm]  => in
> der Klammer steht jetzt [mm]\wurzel{-0,25}[/mm]
>  
> Sippox
>  
>
>  

[mm] $\bffamily \text{Ich kann keinen Fehler entdecken. Daraus kannst du ja folgern, dass die Kreise sich nicht schneiden.}$ [/mm]

[mm] $\bffamily \text{Ein Dreher: In die }p\text{-}q\text{-Formel nicht das }x\text{ mit reinnehmen.}$ [/mm]

[mm] $\bffamily \text{Gruß, Stefan.}$ [/mm]

Bezug
                                
Bezug
Schnittpunkt zweier Kreise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Sa 10.02.2007
Autor: Sippox

Aber ich habe die Kreise extra so gewählt, dass sie sich zweimal schneiden.

Bezug
                        
Bezug
Schnittpunkt zweier Kreise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Sa 10.02.2007
Autor: schachuzipus

Hallo

die Kreise schneiden sich !

Du hast einen Fehler beim Einsetzen von [mm] y=4x-\bruch{35}{2} [/mm] in die zweite Kreisgleichung gemacht.

Du hast das =0 gesetzt, es muss aber [mm] =\left(\bruch{5}{2}\right)^2 [/mm] gesetzt werden

Also [mm] (x-3)^2+((4x-\bruch{35}{2})-3)^2=\bruch{25}{4} [/mm]

Das sollte dann zu der Lösung [mm] x_1=5-\bruch{\wurzel{34}}{17} [/mm] und [mm] x_2=5+\bruch{\wurzel{34}}{17} [/mm] führen.

Gruß

schachuzipus



Bezug
                                
Bezug
Schnittpunkt zweier Kreise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Sa 10.02.2007
Autor: Sippox

Achso, stimmt du hast recht. Die Kreise schneiden sich ja da, wo die Radien die gleichen Koordinaten haben.
Vielen Dank

MfG

Sippox

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]