matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenSchnittpunkt y=cosx und y=x
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Schnittpunkt y=cosx und y=x
Schnittpunkt y=cosx und y=x < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt y=cosx und y=x: Gleichsetzen?
Status: (Frage) beantwortet Status 
Datum: 19:28 Sa 17.07.2010
Autor: give_me_hope

Aufgabe
Weisen sie nach das y=cosx und y=x genau einen Schnittpunkt
in den positiven reelen zahlen besitzen!

Weisen sie nach das y=cosx und y=x genau einen Schnittpunkt
in den positiven reelen zahlen besitzen!
Mir fehlt der Ansatz!

Eigentlcih ja gleichsetzen ! aber wie komme ich dann auf eine Lösung?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.  
Gruß  gmh


        
Bezug
Schnittpunkt y=cosx und y=x: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Sa 17.07.2010
Autor: Al-Chwarizmi


> Weisen sie nach das y=cosx und y=x genau einen Schnittpunkt
> in den positiven reelen zahlen besitzen!
>  Weisen sie nach das y=cosx und y=x genau einen
> Schnittpunkt
> in den positiven reelen zahlen besitzen!


Hallo,

wie wäre es, wenn du dir mal die beiden Graphen aufzeichnest ?
Dann kannst du weitere Überlegungen anstellen, zum Beispiel
in Bezug auf Definitionsbereiche, Stetigkeit, Steigungen etc.


LG    Al-Chw.

Bezug
                
Bezug
Schnittpunkt y=cosx und y=x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Sa 17.07.2010
Autor: give_me_hope

[Dateianhang nicht öffentlich]
und nun?


Gruß gmh

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                        
Bezug
Schnittpunkt y=cosx und y=x: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Sa 17.07.2010
Autor: abakus


> [Dateianhang nicht öffentlich]
>  und nun?

Begründe erst einmal, dass y=x für x>1 die Kosinusfunktion NIE MEHR schneiden wird.
Gruß Abakus

>  
> Gruß gmh


Bezug
                                
Bezug
Schnittpunkt y=cosx und y=x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Sa 17.07.2010
Autor: give_me_hope

cos = periodisch
y=x ist monoton steigend
[mm] \limes_{x\rightarrow\infty}x=\infty [/mm]

Aber damit ist wohl nicht bewiesen das sie sich nicht mehr schneiden!

Hab leider keine iDEE

MfG mgh

Bezug
                                        
Bezug
Schnittpunkt y=cosx und y=x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Sa 17.07.2010
Autor: Tyskie84

Hallo,

nur mal so n Tipp. Du sagtest doch schon das cos periodisch ist. Cos läuft doch periodisch zwischen -1 und 1. Beschränktheit?!?! Das schon in der Vorlesung gehabt? x ist monoton steigend. Für x>1 ist auch y>1. bastel das mal richtig zusammen und schon hast du das stehen was du brauchst.

[hut] Gruß

Bezug
                                        
Bezug
Schnittpunkt y=cosx und y=x: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Sa 17.07.2010
Autor: ChopSuey

Hallo,

> cos = periodisch
>  y=x ist monoton steigend
>  [mm]\limes_{x\rightarrow\infty}x=\infty[/mm]
>  
> Aber damit ist wohl nicht bewiesen das sie sich nicht mehr
> schneiden!

Naja, eigentlich schon. Aber irgendwelche Begriffe in den Raum zu werfen, macht die Sache nicht wirklich aufschlussreich für den Leser, der überzeugt werden will.

Es ist $\ 1 [mm] \le \cos(x) \le [/mm] 1 \ $ für alle $ \ x [mm] \in \IR [/mm] $ und da $\ f(x) = x $ streng monoton steigend ist, gilt $ [mm] \cos(x) [/mm] =: g(x) [mm] \not= [/mm] f(x) $ für alle $\ x [mm] \in \IR [/mm] $ mit $ x > 1 $.



>  
> Hab leider keine iDEE
>  
> MfG mgh

Grüße
ChopSuey


Bezug
                                                
Bezug
Schnittpunkt y=cosx und y=x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 So 18.07.2010
Autor: give_me_hope

danke für die Antwort:

> Es ist [mm]\ 1 \le \cos(x) \le 1 \[/mm] für alle [mm]\ x \in \IR[/mm] und da
> [mm]\ f(x) = x[/mm] streng monoton steigend ist, gilt [mm]\cos(x) =: g(x) \not= f(x)[/mm]
> für alle [mm]\ x \in \IR[/mm] mit [mm]x > 1 [/mm].


Der unterstrichene Text ist mir jedoch nicht klar, weil ich nicht weis was mit g(x) gemeint ist!

>  Gruß

Bezug
                                                        
Bezug
Schnittpunkt y=cosx und y=x: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 So 18.07.2010
Autor: Al-Chwarizmi


> danke für die Antwort:
>  
> > Es ist [mm]\ 1 \le \cos(x) \le 1 \[/mm] für alle [mm]\ x \in \IR[/mm] und da
> > [mm]\ f(x) = x[/mm] streng monoton steigend ist, gilt [mm]\cos(x) =: g(x) \not= f(x)[/mm]
> > für alle [mm]\ x \in \IR[/mm] mit [mm]x > 1 [/mm].
>  
> Der unterstrichene Text ist mir jedoch nicht klar, weil ich
> nicht weis was mit g(x) gemeint ist!
>  >  Gruß


Hallo gmh,

durch das  cos(x)=:g(x)  bzw.  g(x):=cos(x) wird  g(x) definiert !


LG


Bezug
        
Bezug
Schnittpunkt y=cosx und y=x: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Sa 17.07.2010
Autor: Al-Chwarizmi

Noch ein Tipp:

betrachte die Funktion  f(x):=x-cos(x)  und untersuche
ihre Stetigkeits- und Monotonieeigenschaften sowie
ihr Verhalten für [mm] x\to\pm\infty [/mm]  und überlege dir die Konsequenzen !


LG     Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]