matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenSchnittpunkt cos(x) / Parabel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Schnittpunkt cos(x) / Parabel
Schnittpunkt cos(x) / Parabel < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt cos(x) / Parabel: Idee
Status: (Frage) beantwortet Status 
Datum: 13:11 Mo 29.09.2008
Autor: daria

Aufgabe
Geben Sie den Schnittpunkt der beiden Funktionen f(x)=cos(x) und  $ [mm] g(x)=-\bruch{1}{16}x²+3,5$ [/mm] an.

Ich habe versucht die beiden Gleichungen gleichzusetzen.. ich komme dann aber leider garnicht weiter...
Mit pq Formel kann ich ja hier auch nicht arbeiten oder?
Ich brauche dringend irgendein Tipp!!
DANKE!

        
Bezug
Schnittpunkt cos(x) / Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 Mo 29.09.2008
Autor: angela.h.b.


> Geben Sie den Schnittpunkt der beiden Funktionen
> f(x)=cos(x) und  [mm]g(x)=-\bruch{1}{16}x²+3,5[/mm] an.
>  Ich habe versucht die beiden Gleichungen gleichzusetzen..
> ich komme dann aber leider garnicht weiter...
>  Mit pq Formel kann ich ja hier auch nicht arbeiten oder?

Hallo,

die pq-Formel funktioniert nur für quadratische Gleichungen.

Steht da, daß Du den Schnittpunkt angeben sollst, oder steht da womöglich, daß Du zeigen sollst, daß es einen gibt? das ist ein Unterschied!

Gruß v. Angela

Bezug
                
Bezug
Schnittpunkt cos(x) / Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:24 Mo 29.09.2008
Autor: daria

Ich brauche den Schnittpunkt.
Ich habe mir die Funktionen beide aufgemalt. Es gibt einen ungefähr bei -2pi und einen bei +2pi... nur leider kann ich ihn nicht ausrechnen =(

Bezug
                        
Bezug
Schnittpunkt cos(x) / Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Mo 29.09.2008
Autor: angela.h.b.


> Ich brauche den Schnittpunkt.

Hallo,

wie lautet der genaue Aufgabentext? Das wäre wichtig zu wissen.

>  Ich habe mir die Funktionen beide aufgemalt. Es gibt einen
> ungefähr bei -2pi und einen bei +2pi... nur leider kann ich
> ihn nicht ausrechnen =(

Wie gesagt, analytisch geht das nicht, aber oft reicht es , wenn man zeigt, daß es so einen Punkt gibt.

Gruß v. Angela


Bezug
        
Bezug
Schnittpunkt cos(x) / Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 29.09.2008
Autor: schachuzipus

Hallo daria,

ich fürchte, du wirst die Gleichung nicht algebraisch nach x auflösen können.

Du wirst schon auf ein Näherungsverfahren, etwa das Newtonverfahren, zurückgreigfen müssen, um die Gleichung [mm] $h(x)=\cos(x)+\frac{1}{16}x^2-3,5=0$ [/mm] zu approximieren


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]