matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittmenge von zwei Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Schnittmenge von zwei Ebenen
Schnittmenge von zwei Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittmenge von zwei Ebenen: Frage zur Aufgabe!
Status: (Frage) beantwortet Status 
Datum: 20:18 Do 14.06.2007
Autor: Rambo

Aufgabe
wie prüfe ich ob die ebenen parallel oder identisch sind oder ob sie sich in einer schnittgeraden schneiden??

x1 + x2 - x3 =1

4x1 - x2 - x3=3

        
Bezug
Schnittmenge von zwei Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Do 14.06.2007
Autor: max3000

Hallo.

Parallel sind sie, wenn die Normalenvektoren (Koeffizienten aus der Ebenengleichung) linear Abhängig sind.

Identisch: Wenn die Gleichungen gleich sind (evtl. noch mit einer Zahl multipliziert)

Ansonsten haben die immer eine Schnittgerade.

In der Schule wurde sowas glaub ich mit dem Gaußverfahren gelöst.

Grüße
Max

Bezug
                
Bezug
Schnittmenge von zwei Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Do 14.06.2007
Autor: Rambo

danke, aber mein problem ist es, das ich nicht weiß wie ich genau vorgehen muss da in den anderen ebengleichungen normalerweise lamda und mu vorkommen, nur weiß ich nicht wie man hier vorgehen muss?

Danke!

Bezug
                        
Bezug
Schnittmenge von zwei Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Do 14.06.2007
Autor: VNV_Tommy

Hallo Marc!

> danke, aber mein problem ist es, das ich nicht weiß wie ich
> genau vorgehen muss da in den anderen ebengleichungen
> normalerweise lamda und mu vorkommen, nur weiß ich nicht
> wie man hier vorgehen muss?
>  
> Danke!

Wie du vorgehen musst hat Max dir schon gesagt. Die Frage nach der Parallelität lässt sich sehr schnell klären: Die Normalenvektoren der beiden Ebenen lauten [mm] \vektor{1 \\ 1 \\ -1} [/mm] und [mm] \vektor{4 \\ -1 \\ -1}. [/mm] Wenn du nachweisen kannst, dass diese Vektoren kollinear sind, dann liegen die Ebenen parallel zueinander (echt parallel bzw. identisch). Wenn die Normalenvektoren nicht kollinear sind, dann liegen die Ebenen schief zueinander und müssen sich zwangsläufig in einer Geraden schneiden (Schnittgerade).

Für die Ermittlung der Schnittgerade könntest du dir die Ebenen in die Parameterform umwandeln. Dafür brauchst du jeweils 3 Punkte der Ebene. Diese kannst du ermittlen, indem du die Koordinatenform benutzt. Finde 3 verschieden Kombinationen, welche die Gleichung der Ebene erfüllen. Zum Beispiel für die erste Ebene:
[mm]1*x_{1}+1*x_{2}-1*x_{3}=1 \rightarrow 1*(1)+1*(1)-1*(1)=1 \rightarrow Punkt A\vektor{1 \\ 1 \\ 1}; [/mm]
[mm]1*(1)+1*(0)-1*(0)=1 \rightarrow Punkt B \vektor{1 \\ 0 \\ 0};[/mm]
[mm]1*(0)+1*(1)-1*(0)=1 \rightarrow Punkt C \vektor{0 \\ 1 \\ 0};[/mm]

Damit könntest du nun die Parameterform der Ebene aufstellen und diese dann in die andere Ebenengleichung einsetzen um dann die Schnittgerade zu ermitteln.

Wenn du noch Fragen dazu hast: her damit! ;-)

Gruß,
Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]