matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeSchnittmenge Untervektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Schnittmenge Untervektorräume
Schnittmenge Untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittmenge Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mo 14.01.2008
Autor: hase-hh

Aufgabe
Seien [mm] U_1, U_2, U_3 [/mm] dreidimensionale Unterräume eines acht-dimensionalen Vektorraums V, wobei gelte

V = [mm] U_1 [/mm] + [mm] U_2 [/mm] + [mm] U_3. [/mm]

Zeigen Sie: [mm] U_1 [/mm]  /cap  [mm] U_2 [/mm]  /cap  [mm] U_3 [/mm] = {0} .

Wie kann ich das zeigen? Mir fehlt eine Idee, ein Ansatz...

Vielen Dank für eure Hilfe!!

Moin,

ok, ich weiss jeder Untervektorraum hat die dim = 3.

wenn ich die drei vereinigen würde, und sie alle unabhängig von einander wären, erhielte ich die dim=9.

dies ist aber nicht mgl., da die dim des übergeordneten Vektorraums dim =8 ist.

aber wie jetzt weiter???

Gruß
Wolfgang


        
Bezug
Schnittmenge Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Mo 14.01.2008
Autor: angela.h.b.


> Seien [mm]U_1, U_2, U_3[/mm] dreidimensionale Unterräume eines
> acht-dimensionalen Vektorraums V, wobei gelte
>  
> V = [mm]U_1[/mm] + [mm]U_2[/mm] + [mm]U_3.[/mm]
>  
> Zeigen Sie: [mm]U_1[/mm]  /cap  [mm]U_2[/mm]  /cap  [mm]U_3[/mm] = {0} .
>  
> Wie kann ich das zeigen? Mir fehlt eine Idee, ein
> Ansatz...
>  
> Vielen Dank für eure Hilfe!!
>  Moin,
>  
> ok, ich weiss jeder Untervektorraum hat die dim = 3.
>
> wenn ich die drei vereinigen würde, und sie alle unabhängig
> von einander wären, erhielte ich die dim=9.
>
> dies ist aber nicht mgl., da die dim des übergeordneten
> Vektorraums dim =8 ist.
>
> aber wie jetzt weiter???

Hallo,

ich würde versuchen, das durch einen Widerspruch zu zeigen.

Nimm an, im Schnitt läge der Vektor [mm] a\not=0. [/mm]

Dann könntest Du a zu einer Basis von [mm] U_1 [/mm] bzw. [mm] U_2 [/mm] bzw. [mm] U_3 [/mm] ergänzen.

Gruß v. Angela

Bezug
                
Bezug
Schnittmenge Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Di 15.01.2008
Autor: hase-hh

gegenbeweis:

wenn [mm] U_1 \cap U_2 \cap U_3 \ne [/mm] {0}

dann würde es mindestens ein gemeinsames Element in  geben, das  [mm] \ne [/mm] 0 ist; z.b. [mm] \vec{x} [/mm] .


ich könnte die UVR mit  zu einer Basis ergänzen, d.h.

[mm] B_1 ={\vec{x},\vec{a},\vec{b}} [/mm]
[mm] B_2 ={\vec{x},\vec{c},\vec{d}} [/mm]
[mm] B_3 ={\vec{x},\vec{e},\vec{f}} [/mm]

dann würde eine gemeinsame Basis von [mm] U_1 [/mm] + [mm] U_2 [/mm] aus den Vektoren

[mm] \vec{a},\vec{b}, \vec{c},\vec{d}, \vec{x} [/mm] bestehen, sofern

[mm] r*\vec{a} [/mm] + [mm] s*\vec{b} [/mm] + [mm] t*\vec{c} [/mm] + u* [mm] \vec{d} [/mm] + v* [mm] \vec{x} [/mm] = [mm] \vec{0} [/mm]

nur lösbar mit r=s=t=u=v=0. dies sei ebenfalls unterstellt, dann erhielte ich als maximal mögliche dim [mm] (U_1 [/mm] + [mm] U_2) [/mm] = 5

weiter würde ich nun zusätzlich noch [mm] U_3 [/mm] hinzunehmen, erhielte ich

[mm] r*\vec{a} [/mm] + [mm] s*\vec{b} [/mm] + [mm] t*\vec{c} [/mm] + u* [mm] \vec{d} [/mm] + v* [mm] \vec{x} [/mm] + [mm] w*\vec{e} +y*\vec{f} [/mm] = [mm] \vec{0} [/mm]

wenn dies eine Basis von  sein soll, müsste gelten, dass die Gleichung nur lösbar ist für  r=s=t=u=v=w=y=0. dies sei ebenfalls unterstellt, dann erhielte ich als maximal mögliche dim [mm] (U_1 [/mm] + [mm] U_2 [/mm] + [mm] U_3) [/mm] = 7.

da aber V = [mm] U_1 [/mm] + [mm] U_2 [/mm] + [mm] U_3 [/mm]  die Dimension 8 haben soll, d.h. es soll dim (V) = 8 gelten, ist hier ein WIDERSPUCH.

daher kann [mm] U_1 \cap U_2 \cap U_3 [/mm]   nur = {0} sein.


Ist das so richtig??

Bezug
                        
Bezug
Schnittmenge Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 07:49 Mi 16.01.2008
Autor: angela.h.b.


> gegenbeweis:
>  
> wenn [mm]U_1 \cap U_2 \cap U_3 \ne[/mm] {0}
>
> dann würde es mindestens ein gemeinsames Element in  geben,
> das  [mm]\ne[/mm] 0 ist; z.b. [mm]\vec{x}[/mm] .
>  
>
> ich könnte die UVR mit  zu einer Basis ergänzen, d.h.
>
> [mm]B_1 =\{\vec{x},\vec{a},\vec{b}\}[/mm]
>   [mm]B_2 =\{\vec{x},\vec{c},\vec{d}\}[/mm]
>  
>  [mm]B_3 =\{\vec{x},\vec{e},\vec{f}\}[/mm]

Hallo,

Du scheinst es gut verstanden zu haben.

Du brauchst da gar nicht mehr mit der linearen Unabhängigkeit heraumzumachen.

Es ist dann ja [mm] B_i [/mm] ein Erzeugendensystem von [mm] U_i, [/mm]

und die Summe der U__i ist ja der von [mm] \{\vec{x},\vec{a},\vec{b},\vec{c},\vec{d},\vec{e},\vec{f}\} [/mm]

erzeugte Raum - egal ob die linear abhängig sind oder nicht.

Wir haben ein Erzeugendensystem aus 7 Elementen, also kann die Dimension des betrachteten Raumes höchstens =7 sein.


Das ist ja auch das, was Du herausgefunden hast. Du solltest in Deinen Einzelschritten nicht mit "hätte gemeinsame Basis" argumentieren, sondern lieber mit "wäre ein Erzeugendensystem". Erzeugendensystem ist der Begriff, der fehlt in Deinem Beweis - ich würde den Beweis aber nicht als falsch bezeichnen.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]