matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeSchnittmenge Unterraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Schnittmenge Unterraum
Schnittmenge Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittmenge Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Sa 05.11.2011
Autor: durden88

Aufgabe
Es seien U,V und Unterräue eines Vektorraumes. Gilt dann stets [mm] U\cap(V+W)=(U \cap [/mm] V)+(U [mm] \cap [/mm] W)?

Alos das hier sieht mir ein wenig nach Distributivgesetz aus. Ich weiß, dass es nicht gilt (habe ich als Tipp bekommen), nun muss ich aber noch beweisen wieso es nicht gilt, also ein gegenbeispiel suchen.

In wieweit muss ich das machen,  soll ich das mit irgendwelchen konkreten Zahlen machen oder ganz formal und wenn ja, wo soll ich ansetzen?

        
Bezug
Schnittmenge Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Sa 05.11.2011
Autor: donquijote


> Es seien U,V und Unterräue eines Vektorraumes. Gilt dann
> stets [mm]U\cap(V+W)=(U \cap[/mm] V)+(U [mm]\cap[/mm] W)?
>  Alos das hier sieht mir ein wenig nach Distributivgesetz
> aus. Ich weiß, dass es nicht gilt (habe ich als Tipp
> bekommen), nun muss ich aber noch beweisen wieso es nicht
> gilt, also ein gegenbeispiel suchen.
>  
> In wieweit muss ich das machen,  soll ich das mit
> irgendwelchen konkreten Zahlen machen oder ganz formal und
> wenn ja, wo soll ich ansetzen?

Wenn du zeigen willst, dass die Aussage nicht allgemein gilt, reicht ein konkretes Gegenbeispiel.
In diesem Fall kannst du dir z.B. im [mm] \IR^2 [/mm] geometrisch überlegen, wie ein solches Gegenbeispiel aussehen könnte.

Bezug
                
Bezug
Schnittmenge Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Sa 05.11.2011
Autor: durden88

Ok, kannst du mir vielleicht an nem anderen Beispiel zeigen, wie ich daran gehen soll, also nen kleinen Anhaltspunkt?

Bezug
                        
Bezug
Schnittmenge Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Sa 05.11.2011
Autor: donquijote

Du kannst eindimensionale Unterräume U,V,W des [mm] \IR^2 [/mm] betrachten, die ja geometrisch Geraden durch 0 sind.
Wenn [mm] V\ne [/mm] W, ist dann V+W die gesamte Ebene.
Wenn du dir dazu ein Bild malst, sollte die Lösung nicht mehr so schwer sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]