matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenSchnittmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Schnittmenge
Schnittmenge < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittmenge: Beweis
Status: (Frage) beantwortet Status 
Datum: 20:19 Mi 16.10.2013
Autor: EGF

Aufgabe
Seien M, N Mengen und f: M -> N eine Abbildung. Weiter seien A und B Teilmengen von M und C und D Teilmengen von N.
Beweisen oder widerlegen Sie (durch ein Gegenbeispiel) folgende Aussagen:
a) f(A [mm] \cap [/mm] B) = f(A) [mm] \cap [/mm] f(B)
b) [mm] f^{-1}(C \cap [/mm] D) = [mm] f^{-1} [/mm] (C) [mm] \cap f^{-1} [/mm] (D)

Guten Abend =)
Folgende Aufgabe hat mein Freund heute aus seiner Vorlesung mitgebracht. Und irgendwie stehen wir beide auf dem Schlauch..

bei a haben wir bisher:

Zu zeigen:

[mm] \forall [/mm] y [mm] \in [/mm] N: (y [mm] \in [/mm]  f(A [mm] \cap [/mm] B) [mm] \gdw [/mm] y [mm] \in [/mm] f(A) [mm] \cap [/mm] f(B))
Es gelte:  (y [mm] \in [/mm]  f(A [mm] \cap [/mm] B)
per Definition existiert dann ein x [mm] \in [/mm]  A [mm] \cap [/mm] B : f(x) = y
[mm] \gdw (\exists [/mm] x [mm] \in [/mm] A : f(x) = y)  und [mm] (\exists [/mm] x [mm] \in [/mm] B : f(x) = y)
[mm] \gdw [/mm] y = f(A)  und y= f(B) per Definition folgt dann:
y [mm] \in [/mm] f(A) [mm] \cap [/mm] f(B)

Ist das so korrekt? Wenn ja.. kann uns bitte jemand bei b helfen?
Da sind ja Urbilder gemeint oder? Geht das dann nicht genauso?

Danke im voraus!



Wie immer steht die Frage nur hier im Forum ;)

        
Bezug
Schnittmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 Do 17.10.2013
Autor: hippias


> Seien M, N Mengen und f: M -> N eine Abbildung. Weiter
> seien A und B Teilmengen von M und C und D Teilmengen von
> N.
>  Beweisen oder widerlegen Sie (durch ein Gegenbeispiel)
> folgende Aussagen:
>  a) f(A [mm]\cap[/mm] B) = f(A) [mm]\cap[/mm] f(B)
>  b) [mm]f^{-1}(C \cap[/mm] D) = [mm]f^{-1}[/mm] (C) [mm]\cap f^{-1}[/mm] (D)
>  Guten Abend =)
>  Folgende Aufgabe hat mein Freund heute aus seiner
> Vorlesung mitgebracht. Und irgendwie stehen wir beide auf
> dem Schlauch..
>  
> bei a haben wir bisher:
>  
> Zu zeigen:
>
> [mm]\forall[/mm] y [mm]\in[/mm] N: (y [mm]\in[/mm]  f(A [mm]\cap[/mm] B) [mm]\gdw[/mm] y [mm]\in[/mm] f(A) [mm]\cap[/mm]
> f(B))
>  Es gelte:  (y [mm]\in[/mm]  f(A [mm]\cap[/mm] B)
>  per Definition existiert dann ein x [mm]\in[/mm]  A [mm]\cap[/mm] B : f(x) =
> y
>  [mm]\gdw (\exists[/mm] x [mm]\in[/mm] A : f(x) = y)  und [mm] > (\exists[/mm] x [mm]\in[/mm] B :

Dieses [mm] $\iff$ [/mm] ist klaerungsbeduerftig: Denn links hast Du ein $x$, das in $A$ und $B$ liegt, waehrend Du rechts ein $x$ aus $A$ hast und ein moeglicherweise verschiedenes $x'$ aus $B$. Also die [mm] $\Rightarrow$ [/mm] Richtung ist klar, aber [mm] $\Leftarrow$ [/mm] nicht.

> f(x) = y)
>  [mm]\gdw[/mm] y = f(A)  und y= f(B) per Definition folgt dann:
>  y [mm]\in[/mm] f(A) [mm]\cap[/mm] f(B)
>  
> Ist das so korrekt? Wenn ja.. kann uns bitte jemand bei b
> helfen?
>  Da sind ja Urbilder gemeint oder?

Ja.

> Geht das dann nicht
> genauso?

Geht so aehnlich.

>  
> Danke im voraus!
>  
>
>
> Wie immer steht die Frage nur hier im Forum ;)


Bezug
        
Bezug
Schnittmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 03:40 Fr 18.10.2013
Autor: tobit09

Hallo EGF!


> Seien M, N Mengen und f: M -> N eine Abbildung. Weiter
> seien A und B Teilmengen von M und C und D Teilmengen von
> N.
>  Beweisen oder widerlegen Sie (durch ein Gegenbeispiel)
> folgende Aussagen:
>  a) f(A [mm]\cap[/mm] B) = f(A) [mm]\cap[/mm] f(B)
>  b) [mm]f^{-1}(C \cap[/mm] D) = [mm]f^{-1}[/mm] (C) [mm]\cap f^{-1}[/mm] (D)


> bei a haben wir bisher:
>  
> Zu zeigen:
>
> [mm]\forall[/mm] y [mm]\in[/mm] N: (y [mm]\in[/mm]  f(A [mm]\cap[/mm] B) [mm]\gdw[/mm] y [mm]\in[/mm] f(A) [mm]\cap[/mm]
> f(B))

Das wird dir nicht gelingen, denn es stimmt im Allgemeinen nicht.

>  Es gelte:  (y [mm]\in[/mm]  f(A [mm]\cap[/mm] B)
>  per Definition existiert dann ein x [mm]\in[/mm]  A [mm]\cap[/mm] B : f(x) =
> y
>  [mm]\gdw (\exists[/mm] x [mm]\in[/mm] A : f(x) = y)  und [mm](\exists[/mm] x [mm]\in[/mm] B :
> f(x) = y)

Hier geht es schief. Die Implikation [mm] $\Leftarrow$ [/mm] ist nicht nur klärungsbedürftig, sondern im Allgemeinen falsch.

>  [mm]\gdw[/mm] y = f(A)  und y= f(B)

[mm] $y\in [/mm] f(A)$ und [mm] $y\in [/mm] f(B)$ meinst du.

> per Definition folgt dann:
>  y [mm]\in[/mm] f(A) [mm]\cap[/mm] f(B)

Beachte, dass du für alle Objekte $y$ die Äquivalenz

     [mm] $y\in f(A\cap B)\iff y\in f(A)\cap [/mm] f(B)$

zeigen müsstest (wenn das denn zuträfe).
Dazu würden ZWEI Richtungen gehören.
Du hast nur die Richtung [mm] $\Rightarrow$ [/mm] formuliert.


> kann uns bitte jemand bei b
> helfen?
>  Da sind ja Urbilder gemeint oder?

Ja.

> Geht das dann nicht
> genauso?

Ich würde nicht sagen, dass das "genauso" geht, auch wenn die Grundvorgehensweise die gleiche ist:
Zeige, dass für alle Objekte $x$ die Aussagen [mm] $x\in f^{-1}(C\cap [/mm] D)$ und [mm] $x\in f^{-1}(C)\cap f^{-1}(D)$ [/mm] äquivalent sind.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]