matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittgerade zweier Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Schnittgerade zweier Ebenen
Schnittgerade zweier Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade zweier Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:46 Sa 13.09.2008
Autor: Beautiful_Day

Aufgabe
Bestimmen Sie die Schnittgerade der Ebenen.

[mm] E1:\vec{x}=\vektor{1 \\ 0 \\ 3} [/mm] + r [mm] \* \vektor{1 \\ 0 \\ 0} [/mm] + s [mm] \* \vektor{1 \\ 1 \\ 0} [/mm]

[mm] E2:\vec{x}=\vektor{2 \\ 3 \\ 2} [/mm] + k [mm] \* \vektor{0 \\ 1 \\ 1} [/mm] + l [mm] \* \vektor{2 \\ 0 \\ 1} [/mm]

Hallo, ich hab zwar eine Rechnung für die obige Aufgabe allerdings bin ich mir ihrer Richtigkeit so gar nicht sicher. Wäre schön, wenn das mal jmd überprüfen kann, der mehr Ahnung hat als ich. Schreibe Dienstag eine Klausur über Vektorrechnung!

Meine Rechnung:

1. Ebenen gleichsetzen:

x1: 1 + r + s= 2 + 2l
x2: s = 3 + k
x3: 3 = 2 + k + l

2. Sotieren:

I. r + s - 2l = 1
II. s - k = 3
III. - k - l = -1

Die III. Gleichung ergibt ja praktisch umgeformt schon k= 1-l womit man ja schon k in Abhängigkeit von l bestimmt hätte. Kann ich das nun einfach in die Ebenengleichung 2 einsetzen?

Also [mm] E2:\vec{x}=\vektor{2 \\ 3 \\ 2} [/mm] + (1 - l) [mm] \*\vektor{0 \\ 1 \\ 1} [/mm] + l [mm] \* \vektor{2 \\ 0 \\ 1}? [/mm]

Das ausmultiplizieren kann ich dann alleine. Und dann noch eine Frage: Wie kann ich dann meine Schnittgerade nach der Richtigkeit überprüfen? Mein Lehrer meinte iwas von "l frei wählen und und gucken ob der ausgerechnete Punkt dann auf E1 liegt" ...nur wie geht das, wenn ich r und s nicht bestimmt habe? ;D

Vielen lieben Dank im Voraus!

        
Bezug
Schnittgerade zweier Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Sa 13.09.2008
Autor: Adamantin


> Bestimmen Sie die Schnittgerade der Ebenen.
>  
> [mm]E1:\vec{x}=\vektor{1 \\ 0 \\ 3}[/mm] + r [mm]\* \vektor{1 \\ 0 \\ 0}[/mm]
> + s [mm]\* \vektor{1 \\ 1 \\ 0}[/mm]
>  
> [mm]E2:\vec{x}=\vektor{2 \\ 3 \\ 2}[/mm] + k [mm]\* \vektor{0 \\ 1 \\ 1}[/mm]
> + l [mm]\* \vektor{2 \\ 0 \\ 1}[/mm]
>  Hallo, ich hab zwar eine
> Rechnung für die obige Aufgabe allerdings bin ich mir ihrer
> Richtigkeit so gar nicht sicher. Wäre schön, wenn das mal
> jmd überprüfen kann, der mehr Ahnung hat als ich. Schreibe
> Dienstag eine Klausur über Vektorrechnung!
>  
> Meine Rechnung:
>  
> 1. Ebenen gleichsetzen:
>  
> x1: 1 + r + s= 2 + 2l
>  x2: s = 3 + k
>  x3: 3 = 2 + k + l
>  
> 2. Sotieren:
>  
> I. r + s - 2l = 1
>  II. s - k = 3
>  III. - k - l = -1
>
> Die III. Gleichung ergibt ja praktisch umgeformt schon k=
> 1-l womit man ja schon k in Abhängigkeit von l bestimmt
> hätte. Kann ich das nun einfach in die Ebenengleichung 2
> einsetzen?
>
> Also [mm]E2:\vec{x}=\vektor{2 \\ 3 \\ 2}[/mm] + (1 - l) [mm]\*\vektor{0 \\ 1 \\ 1}[/mm]
> + l [mm]\* \vektor{2 \\ 0 \\ 1}?[/mm]

[ok] mein Rechenprogramm gibt dir recht ;) Sehe auch keine Rechenfehler, also die Schnittgerade stimmt


>  
> Das ausmultiplizieren kann ich dann alleine. Und dann noch
> eine Frage: Wie kann ich dann meine Schnittgerade nach der
> Richtigkeit überprüfen? Mein Lehrer meinte iwas von "l frei
> wählen und und gucken ob der ausgerechnete Punkt dann auf
> E1 liegt" ...nur wie geht das, wenn ich r und s nicht
> bestimmt habe? ;D
>  
> Vielen lieben Dank im Voraus!

Nun was heißt denn Schnittgerade? Es heißt, dass die Gerade ein Teil von beiden Ebenen ist, der sich gleichzeitig in beiden befinden (na wie das klingt), sprich die Gerade muss sowohl in [mm] E_1 [/mm] als auch in [mm] E_2 [/mm] liegen, das kannst du doch überprüfen:

Du hast deine Gerade [mm]g_s=\vektor{2 \\ 4 \\ 3}+\lambda*\vektor{2 \\ -1 \\ 0}[/mm]

Zum Prüfen nehme ich am liebsten die Koordinatengleichung, Normalenform geht auch, Parameter natürlich auch, aber trotzdem

[mm] E_1:z=3 [/mm]

[mm] E_2:x+2y-2z=4 [/mm]

Jetzt einfach einsetzen:

[mm] g_s [/mm] in [mm] E_1:[/mm]  [mm]3=3[/mm] Probe stimmt / wahr

[mm] g_s [/mm] in [mm] E_2:[/mm] [mm]2+2\lambda+2*(4-\lambda)-2*(3)=4\gdw2+2\lambda+8-2\lambda-6=4\gdw4=4[/mm] Probe stimmt / wahr

Übrigens ist das nur eine Variante: da du was mit l (bei mir [mm] \lambda) [/mm] haben wolltest, geht es auch so:

Damit [mm] g_s [/mm] Teilmenge von [mm] E_1 [/mm] und [mm] E_2 [/mm] sein soll, muss gelten:

1. Richtungsvektor in einer Ebene mit [mm] E_1 [/mm] und [mm] E_2 [/mm]
2. Ortspunkt von [mm] g_s [/mm] muss in [mm] E_1 [/mm] und [mm] E_2 [/mm] liegen

Richtungsvektor von [mm] g_s [/mm] ist [mm] \vektor{2 \\ -1 \\ 0} [/mm]

Dieser Vektor muss in einer Ebene mit [mm] E_1 [/mm] liegen, also aus r* [mm] \vektor{1 \\ 0 \\ 0} [/mm] und s* [mm] \vektor{1 \\ 1 \\ 0} [/mm] herzustellen sein

2=r+s [mm] \Rightarrow [/mm] r=3
-1=s  
0=0

geht

für [mm] E_2 [/mm]

2=2l  [mm] \Rightarrowl=1 [/mm]
-1=k
0=k+1l  [mm] \Rightarrow [/mm] -1+1=0

Also bildet der Richtungsvektor von [mm] g_s [/mm] mit [mm] E_1 [/mm] und [mm] E_2 [/mm] eine Ebene, liegt also in der selben Ebene. Damit ist 1. erfüllt

Nun Punkt zwei. Der Ortspunkt [mm] \vektor{2 \\ 4 \\ 3} [/mm] muss Teil von [mm] E_1 [/mm] und [mm] E_2 [/mm] sein:

für [mm] E_1 [/mm]

2=1+r+s [mm] \Rightarrow [/mm] r=-3
4=s
3=3

geht oder in die Koordinatenform wie oben z=3 also 3=3

für [mm] E_2: [/mm]

2=2+2l [mm] \Rightarrow [/mm] l=0
4=3+k [mm] \Rightarrow [/mm] k=1
3=2+k+l [mm] \Rightarrow [/mm] 3=2+1=3 wahr

oder in Koordinatenform wie oben 4=4

Wie man sieht, ist die Probe oben mit dem Einsetzen der gesamten Gerade in die Koordinatenform viel einfacher und schneller







Bezug
                
Bezug
Schnittgerade zweier Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:15 Sa 13.09.2008
Autor: Beautiful_Day

Vielen lieben Dank ;-) Supi!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]