matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittgerade aus PNF der E.s
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Schnittgerade aus PNF der E.s
Schnittgerade aus PNF der E.s < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade aus PNF der E.s: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Di 29.05.2007
Autor: dexter

Es geht um die Schnittgeradenberechnung einer Ebenenschar.
Ich möchte aus der Punkt-Normalenform dieser Schar die Schnittgerade bestimmen können.
Ist das ohne Umforumung überhaupt möglich?

[mm] \begin{pmatrix} 2k \\ 4 \\ 3-k \end{pmatrix}\times[\begin{pmatrix} x \\ y \\ z \end{pmatrix}-\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}] [/mm] = 0

Ich benutze zwei Ebenen dieser Schar:
Wenn ich eine Umformung in Parameterform vornehme und dann einfach [mm] \begin{pmatrix} x \\ y \\ z \end{pmatrix} [/mm] einsetze kriege ich folgende Lösung:

[mm] \begin{pmatrix} x \\ y \\ z \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 1,5 \\ 1,25 \\ 0 \end{pmatrix} [/mm] + [mm] \lambda \begin{pmatrix} 0,5 \\ -0,75 \\ 1 \end{pmatrix} [/mm]

Wie oben schon gesagt möchte ich wissen, ob ich nicht auch ohne Umformung, also gleich von der Punkt-Normalen-Form, die Schnittgeradengleichung berechnen kann.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittgerade aus PNF der E.s: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Di 29.05.2007
Autor: Zwerglein

Hi, dexter,

> Es geht um die Schnittgeradenberechnung einer Ebenenschar.
>  Ich möchte aus der Punkt-Normalenform dieser Schar die
> Schnittgerade bestimmen können.
>  Ist das ohne Umforumung überhaupt möglich?
>  
> [mm]\begin{pmatrix} 2k \\ 4 \\ 3-k \end{pmatrix}\times[\begin{pmatrix} x \\ y \\ z \end{pmatrix}-\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}][/mm] = 0
>  
> Ich benutze zwei Ebenen dieser Schar:
>  Wenn ich eine Umformung in Parameterform vornehme und dann
> einfach [mm]\begin{pmatrix} x \\ y \\ z \end{pmatrix}[/mm] einsetze
> kriege ich folgende Lösung:
>  
> [mm]\begin{pmatrix} x \\ y \\ z \end{pmatrix}[/mm] = [mm]\begin{pmatrix} 1,5 \\ 1,25 \\ 0 \end{pmatrix}[/mm] + [mm]\lambda \begin{pmatrix} 0,5 \\ -0,75 \\ 1 \end{pmatrix}[/mm]
>  
> Wie oben schon gesagt möchte ich wissen, ob ich nicht auch
> ohne Umformung, also gleich von der Punkt-Normalen-Form,
> die Schnittgeradengleichung berechnen kann.

Das geht z.B. so:
(1) Wie man erkennt, liegt der Punkt A(1; 2; -1) in allen Ebenen der Schar,
demnach auch auf der Schnittgeraden:
Folglich kann man ihn als Aufpunkt der Schnittgeraden verwenden.

(2) Der Richtungsvektor der Schnittgeraden steht auf allen Normalenvektoren der Ebenenschar senkrecht.
Also kann man ihn umgekehrt als KREUZPRODUKT zweier dieser Normalenvektoren (z.B. mit k=0 und k=1) berechnen:
[mm] \vektor{0 \\ 4 \\ 3} \times \vektor{2 \\ 4 \\ 2} [/mm] = [mm] \vektor{-4 \\ 6 \\ -8} [/mm] = -2* [mm] \vektor{2 \\ -3 \\ 4} [/mm]

Und schon kannst Du eine Gleichung der Schnittgeraden hinschreiben!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]