matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittgerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Schnittgerade
Schnittgerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 So 09.05.2010
Autor: ms2008de

Hallo,
Ich hätte folgende Frage, und zwar:  Wenn ich 2 Ebenen in Koordinatenform gegeben habe, also [mm] E_{1} [/mm] : [mm] ax_{1} [/mm] + [mm] bx_{2}+ cx_{3} [/mm] =d und [mm] E_{2}: ex_{1} [/mm] + [mm] fx_{2}+ gx_{3} [/mm] =h mit a,b,c,d,e,f,g, h [mm] \in \IR [/mm] und die 2 Ebenen sollen sich schneiden...
Was passiert genau, wenn ich nun [mm] ax_{1} [/mm] + [mm] bx_{2}+ cx_{3} [/mm] -d = [mm] ex_{1} [/mm] + [mm] fx_{2}+ gx_{3} [/mm] -h setze? An sich bekomm ich dann ja eine neue Ebene heraus und keine Schnittgerade die es ja eigentlich sein sollte...? Enthält diese Ebene denn wenigstens dann die Schnittgerade und wie sieht diese Ebene aus, kann man darüber denn irgendetwas aussagen? Ist das möglicherweise eine Winkelhalbierende zwischen [mm] E_{1} [/mm] und [mm] E_{2}? [/mm]

Viele Grüße

        
Bezug
Schnittgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 02:12 Mo 10.05.2010
Autor: Ersty

Hi,
vlt hilft dir das hier:

http://www.rither.de/a/mathematik/lineare-algebra-und-analytische-geometrie/schnittprobleme/ebene-schneidet-ebene/

Wenn nicht, frag nochmal nach!

MFG Ersty

Bezug
        
Bezug
Schnittgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 06:09 Mo 10.05.2010
Autor: angela.h.b.


>  Ich hätte folgende Frage, und zwar:  Wenn ich 2 Ebenen in
> Koordinatenform gegeben habe, also [mm]E_{1}[/mm] : [mm]ax_{1}[/mm] + [mm]bx_{2}+ cx_{3}[/mm]
> =d und [mm]E_{2}: ex_{1}[/mm] + [mm]fx_{2}+ gx_{3}[/mm] =h mit a,b,c,d,e,f,g,
> h [mm]\in \IR[/mm] und die 2 Ebenen sollen sich schneiden...

Hallo,

wenn man es richtig macht, bestimmt man zur Beantwortung dieser Frage die Lösungsmenge des Gleichungssystems

ax+bx+cz=d
ex+fy+gz=h,

welches äquivalent ist zu

ax+bx+cz-d=0
ex+fy+gz-h=0.

>  Was passiert genau, wenn ich nun [mm]ax_{1}[/mm] + [mm]bx_{2}+ cx_{3}[/mm]
> -d = [mm]ex_{1}[/mm] + [mm]fx_{2}+ gx_{3}[/mm] -h setze?

Das obige GS ist äquivalent zu

[mm]ax_{1}[/mm] + [mm]bx_{2}+ cx_{3}[/mm] -d = [mm]ex_{1}[/mm] + [mm]fx_{2}+ gx_{3}[/mm] -h
ex+fy+gz-h=0,
und wenn Du dieses verwendest, passiert gar nichts weiter, Du bekommst die richtige Lösung.

Deine Frage zielt nun auf die Ebene [mm] E_3, [/mm] welche Lösung der Gleichung
[mm]ax_{1}[/mm] + [mm]bx_{2}+ cx_{3}[/mm] -d = [mm]ex_{1}[/mm] + [mm]fx_{2}+ gx_{3}[/mm] -h
ist.

Es ist die Ebene, in welcher all die Punkte [mm] (p_1|p_2|p_3) [/mm] liegen, für welche $ [mm]ax_{1}[/mm] + [mm]bx_{2}+ cx_{3}[/mm] -d = [mm]ex_{1}[/mm] + [mm]fx_{2}+ gx_{3}[/mm] -h $ ist.
Natürlich sind in dieser Ebene auch die Punkte enthalten, für die gleichzeitig
[mm]ax_{1}[/mm] + [mm]bx_{2}+ cx_{3}[/mm] -d =0 [mm] \quad und\quad[/mm]   [mm]ex_{1}[/mm] + [mm]fx_{2}+ gx_{3}[/mm] -h=0 $
ist - sofern es solche Punkte gibt.
Wenn es eine Schnittgerade gibt, ist diese also in der Ebene enthalten.


> An sich bekomm ich
> dann ja eine neue Ebene heraus und keine Schnittgerade die
> es ja eigentlich sein sollte

Wenn Du die Bedingung ex+fy+gz-h=0 dazunimmst, bekommst Du die Schnittgerade von [mm] E_1 [/mm] und [mm] E_2, [/mm] denn die gemeinsamen Punkte von [mm] E_3 [/mm] und [mm] E_2 [/mm] sind ja dieselben wie von [mm] E_1 [/mm] und [mm] E_2. [/mm]

> Enthält diese Ebene denn
> wenigstens dann die Schnittgerade und wie sieht diese Ebene
> aus, kann man darüber denn irgendetwas aussagen? Ist das
> möglicherweise eine Winkelhalbierende zwischen [mm]E_{1}[/mm] und
> [mm]E_{2}?[/mm]

Das nicht. Ihr Normalenvektor ist der Differenzvektor der beiden Normalenvektoren [mm] \vektor{a\\b\\c} [/mm] und [mm] \vektor{e\\f\\g}. [/mm]
Schon, wenn Du Dir den Spaß erlaubst und [mm] E_2 [/mm] in der Gestalt [mm] \bruch{1}{5}*(ex+fy+gz-h)=0 [/mm] verwendest, bekommst Du eine andere Ebene - welche aber ebenfalls die Schnittgerade ethält, wenn es eine gibt.

Gruß v. Angela

>  
> Viele Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]