matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraSchnitt von Idealen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Schnitt von Idealen
Schnitt von Idealen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnitt von Idealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mi 25.11.2009
Autor: sTuDi_iDuTs

Hallo zusammen, bei einer Aufgabe hänge ich an folgendem Problem:
3 Ideale [mm] I_1 [/mm] = [mm] , I_2 [/mm] = [mm] [/mm]  und [mm] I_3 [/mm] = [mm] [/mm] dabei sind [mm] X_1 [/mm] und [mm] X_2 [/mm] Unbestimmte!
Nun soll der Schnitt der Ideale berechnet werden...
Soweit ich rausgefunden habe ist der Schnitt von Idealen das kgV der Ideale...
Jedoch komm ich damit nicht weiter! Kann mir vielleicht jemand helfen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Schnitt von Idealen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Do 26.11.2009
Autor: felixf

Hallo!

> Hallo zusammen, bei einer Aufgabe hänge ich an folgendem
> Problem:
>  3 Ideale [mm]I_1[/mm] = [mm], I_2[/mm] = [mm][/mm]  und [mm]I_3[/mm] =
> [mm][/mm] dabei sind [mm]X_1[/mm] und [mm]X_2[/mm] Unbestimmte!

Lass mich raten: es hat mit dieser Aufgabe zu tun?

>  Nun soll der Schnitt der Ideale berechnet werden...
>  Soweit ich rausgefunden habe ist der Schnitt von Idealen
> das kgV der Ideale...

Und wenn sie teilerfremd sind, dann ist das Produkt gleich dem Durchschnitt.

Z.B. ist $1 = [mm] X_1 [/mm] - [mm] (X_1 [/mm] - 1) [mm] \in I_1 [/mm] + [mm] I_2$, [/mm] womit [mm] $I_1$ [/mm] und [mm] $I_2$ [/mm] teilerfremd sind. Damit ist [mm] $I_1 \cap I_2 [/mm] = [mm] I_1 I_2$. [/mm]

LG Felix


Bezug
                
Bezug
Schnitt von Idealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 Do 26.11.2009
Autor: sTuDi_iDuTs

Der Prof. hatte aber gemeint, dass die Ideale nicht teilerfremd seien...
warum zieht man Ideale voneinander ab um zu zeigen, dass sie teilerfremd sind?

Bezug
                        
Bezug
Schnitt von Idealen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Do 26.11.2009
Autor: felixf

Hallo!

> Der Prof. hatte aber gemeint, dass die Ideale nicht
> teilerfremd seien...

Sind sie aber. Man sieht schnell, dass [mm] $I_1 \cap I_2 [/mm] + [mm] I_3 [/mm] = [mm] K[x_1, x_2]$ [/mm] ist.

>  warum zieht man Ideale voneinander ab um zu zeigen, dass
> sie teilerfremd sind?

Es gilt genau dann $I + J = [mm] K[x_1, x_2]$, [/mm] wenn es $i [mm] \in [/mm] I$ und $j [mm] \in [/mm] J$ gibt mit $i + j = 1$.

Ich habe [mm] $i_1 [/mm] = [mm] X_1 \in I_1$ [/mm] und [mm] $i_2 [/mm] = [mm] -(X_1 [/mm] - 1) [mm] \in I_2$ [/mm] angegeben mit [mm] $i_1 [/mm] + [mm] i_2 [/mm] = 1$, woraus [mm] $I_1 [/mm] + [mm] I_2 [/mm] = [mm] K[x_1, x_2]$ [/mm] folgt.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]