matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnitt von Gerade + Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Schnitt von Gerade + Ebene
Schnitt von Gerade + Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnitt von Gerade + Ebene: Korrektur
Status: (Frage) beantwortet Status 
Datum: 10:07 Mi 07.10.2009
Autor: low_head

Aufgabe
Durch [mm] 3x_{1}-2x_{2}+x_{3} [/mm] = 8 ist eine Ebene E1 gegeben. Die Punkte A(-5|4|-2) , B(-2|8|-3) und C(-6|5|3) liegen in einer Ebene E2. Des Weiteren ist eine Gerade g durch [mm] \overrightarrow{x}=\vektor{6 \\ -3 \\ -1}+t\vektor{-2 \\ 2 \\ 4} [/mm] gegeben.

Bestimme die Schnittpunkte [mm] S_{1} [/mm] und [mm] S_{2} [/mm] der Geraden g mit den Ebenen E1 und E2.

[mm] S_{1}: [/mm]

3(6-2t)-2(-3+2t)+1(-1+4t) =8

-> 18-6t+6-4t-1+4t = 8
-> -6t = -15
-> t = 2,5

Einsetzen von t in g:

[mm] \overrightarrow{x}=\vektor{6 \\ -3 \\ -1}+2,5\vektor{-2 \\ 2 \\ 4} [/mm]

[mm] \overrightarrow{x}=\vektor{1 \\ 2 \\ 9} [/mm]

[mm] S_{1} [/mm] (1|2|9)



[mm] S_{2}: [/mm]

Mit den 3 Punkten die Parameterform aufstellen:

E2: [mm] \overrightarrow{x}=\vektor{5 \\ -4 \\ -2}+s\vektor{3 \\ 4 \\ -1}+t\vektor{-1 \\ 1 \\ 5} [/mm]

Umwandeln in die Koordinatenform um das Gauss-Verfahren zu umgehen, da ich das nicht gut kann >.<

Mit Kreuzprodukt oder dem 2ten Verfahren, der Name ist mir entfallen den Normalenvektor ausrechen: [mm] \vektor{3 \\ -2 \\ 1} [/mm]

d ausrechen:

[mm] \vektor{3 \\ -2 \\ 1} [/mm] * [mm] \vektor{5 \\ -4 \\ 2} [/mm] = 15+8+2 = 25

Koordinatenform: [mm] 3x_{1}-2x_{2}+x_{3} [/mm] = 25

Einstezen von g in die Koordinatenform:

3(6-2t)-2(-3+2t)+1(-1+4t) = 25

-> 18-6t+6-4t-1+4t = 25
-> -6t = 2
-> t = -1/3

Einsetzen von t in g:

[mm] \overrightarrow{x}=\vektor{6 \\ -3 \\ -1}-\bruch{1}{3}\vektor{-2 \\ 2 \\ 4} [/mm]

[mm] \overrightarrow{x}=\vektor{20/3 \\ -11/3 \\ -7/3} [/mm]

Aber ich glaub das ist falsch.. die Zahlen sind so komisch..

Liebe Grüße, low.

        
Bezug
Schnitt von Gerade + Ebene: Korrektur
Status: (Antwort) fertig Status 
Datum: 10:11 Mi 07.10.2009
Autor: Loddar

Hallo low_head!


> [mm]S_{1}[/mm] (1|2|9)

[ok]


> d ausrechen:
>  
> [mm]\vektor{3 \\ -2 \\ 1}[/mm] * [mm]\vektor{5 \\ -4 \\ 2}[/mm] = 15+8+2 = 25

[notok] Hier hast Du beim 2. Vektor die Vorzeichen umgedreht. Es kommt heraus: $d \ = \ [mm] \red{-}25$ [/mm] .

Damit stimmt auch die weitere Rechnung nicht. Es ergeben sich nachher auch wirklich "glatte Werte" für den gesuchten Schnittpunkt.


Gruß
Loddar


Bezug
                
Bezug
Schnitt von Gerade + Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Mi 07.10.2009
Autor: low_head

Für d muss ich ja einen Punkt der Ebene mit dem Normalenvektor multiplizieren.

Ich nehme meinen Stützpunkt A (-5|4|-2)

[mm] \vektor{-5 \\ 4 \\ -2}*\vektor{3 \\ -2 \\ 1}= [/mm] -15-8-2=-25

dann setzte ich g in die Koordinatenform ein und erhalten:

t=8

und dann t in g und erhalte

[mm] \overrightarrow{x}=\vektor{-10\\ 13\\31} [/mm]

richtig? >.<

Bezug
                        
Bezug
Schnitt von Gerade + Ebene: nun richtig
Status: (Antwort) fertig Status 
Datum: 10:25 Mi 07.10.2009
Autor: Loddar

Hallo low_head!


[ok] Das habe ich auch erhalten ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]