matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisSchmiegparabel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Schmiegparabel
Schmiegparabel < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schmiegparabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Mi 12.12.2007
Autor: migstriker77

Aufgabe
Bestimmen Sie die Schmiegparabel (zweiter Ordnung) [mm] p(x)=a_{0}+a_1x+a_2x^2 [/mm] für die durch y+cos(y+x)=1 implizit gegebene Funktion y=y(x) im Punkt y(0)=0.

Werte Kollegen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich bin bei diesem Beispiel komplett ratlos, und weiss nicht wie ich das angehen soll. Wäre sehr verbunden wenn Ihr ein Paar Tipps auf Lager hättet.

lg, manuel

        
Bezug
Schmiegparabel: vermutlich so:
Status: (Antwort) fertig Status 
Datum: 15:13 Mi 12.12.2007
Autor: statler

Hallo Manuel, [willkommenmr]

mit der Schmiegparabel ist hoffentlich die Parabel gemeint, die in Funktionswert und 1. und 2. Ableitung mit der gegebenen Kurve übereinstimmt. Wenn das so ist, dann kannst du mit der Kettenregel ('implizites Ableiten') die entsprechenden Zahlenwerte aus der Funktionsgleichung berechnen und damit dann die Koeffizienten der Parabelgleichung gewinnen.

Wenn das anders definiert sein sollte, müßtest du das hier noch mal erläutern.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Schmiegparabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Mi 12.12.2007
Autor: migstriker77

Mit Schmiegparabel ist mMn. ein Taylorpolynom 2ter Ordnung gemeint.
Aber ich habe keine Ahnung wie ich die Funktion ableiten soll, geschweige denn doppelt ableiten soll...

Mfg, Manuel

Bezug
                        
Bezug
Schmiegparabel: 1. Schritt dahin
Status: (Antwort) fertig Status 
Datum: 07:20 Fr 14.12.2007
Autor: statler

Guten Morgen Manuel!

> Mit Schmiegparabel ist mMn. ein Taylorpolynom 2ter Ordnung
> gemeint.
> Aber ich habe keine Ahnung wie ich die Funktion ableiten
> soll, geschweige denn doppelt ableiten soll...

Wenn du y+cos(y+x)=1 auf beiden Seiten nach x ableitest, erhältst du
y' + (-sin(y+x)*(y'+1) = 0. Dabei ist y'+1 die innere Ableitung.
Jetzt ist y(0) = 0 gegeben, das kannst du einsetzen:
y'(0) - sin(y(0) + 0)*(y'(0) + 1) = 0,
also y'(0) = 0.
Die 2. Ableitung überlasse ich mal dir, sie ist nicht 0.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]