matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraSchittkreis zweier Kugeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Schittkreis zweier Kugeln
Schittkreis zweier Kugeln < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schittkreis zweier Kugeln: Schittkreis zweier Kugeln2
Status: (Frage) beantwortet Status 
Datum: 22:26 Do 02.03.2006
Autor: svenchen

Abend zusammen!

Ich habe zwei Kugeln, die sich schneiden. (kein Sonderfall ).

Könnt ihr mir das generelle Vorgehen zur Bestimmung des Schnittkreises (Radius und Mittelpunkt) erklären ? (nicht der Weg: erst 2 gleichungen gleichsetzen und dann die Ebene die entsteht mit einer Kugel schneiden. bin an der geometrischen Lösung interessiert, da kann man wohl irgendwie zweimal den Phytagoras aufstellen)...

danke euch!

        
Bezug
Schittkreis zweier Kugeln: Antwort
Status: (Antwort) fertig Status 
Datum: 01:03 Fr 03.03.2006
Autor: felixf


> Abend zusammen!
>  
> Ich habe zwei Kugeln, die sich schneiden. (kein Sonderfall
> ).
>  
> Könnt ihr mir das generelle Vorgehen zur Bestimmung des
> Schnittkreises (Radius und Mittelpunkt) erklären ? (nicht
> der Weg: erst 2 gleichungen gleichsetzen und dann die Ebene
> die entsteht mit einer Kugel schneiden. bin an der
> geometrischen Lösung interessiert, da kann man wohl
> irgendwie zweimal den Phytagoras aufstellen)...

Mal schaun ob das hier das ist was du wissen willst :-)

Nun, geometrisch kannst du das ganze auf den Schnitt zweier Kreise zurueckfuehren: Du schaust 'passend' von der Seite drauf. Dann hast du (etwa im Nullpunkt und im Punkt $(x, 0)$) zwei Kreise mit Radien [mm] $r_1$ [/mm] und [mm] $r_2$ [/mm] und Abstand $x$. Wenn du die beiden Schnittpunkte hast, bekommst du sowohl den Radius des Schnittkreises als auch den Schittpunkt der Kreisebene mit der Verbindungsgeraden zwischen den Mittelpunkten der Kugeln.

Das zweidimensionale Problem ist im Prinzip das gleiche wie: Gegeben sind die drei Seitenlaengen eines Dreiecks, finde die Hoehe (von einer vorgegebenen der drei Seiten aus als Grundseite gesehen). Jetzt kannst du mit (dem zweidimensionalen) Phytagoras eine Gleichung aufstellen, die du loesen kannst.

Alternativ kannst du das auch als Minimierungsproblem betrachten: fuer einen Punkt $(t, 0)$ auf der Verbindungsgerade $(0, 0)$ und $(x, 0)$, also $0 [mm] \le [/mm] t [mm] \le [/mm] x$, betrachte die Funktion $f(t) := [mm] |\sqrt{r_1^2 - t^2} [/mm] - [mm] \sqrt{r_2^2 - (1-t)^2}|$ [/mm] (oder besser, deren Quadrat), welche die Abweichung der Hoehen angibt: ist $f(t) = 0$, so ist $(t, 0)$ der Punkt, an dem die Schnittgerade (durch die beiden Schnittpunkte) die $x$-Achse beruehrt.

Hilft dir das?

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]