matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenScheitelpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Scheitelpunkt
Scheitelpunkt < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Scheitelpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Di 28.04.2009
Autor: Mimic

Hallo,

folgende Frage:

Wie wurde hier der Scheitelpunkt berechnet ?

f(t)= [mm] 0,09t^2-3t [/mm] + 21
  
     [mm] =0,09*(t^2-\left( \bruch{100}{3} \right)t [/mm] + [mm] \left( \bruch{700}{3} \right) [/mm]

     [mm] =0,09*(t^2- [/mm] [mm] \left( \bruch{100}{3} \right) [/mm] t +   [mm] \left( \bruch{2500}{9} \right) [/mm] - [mm] \left( \bruch{2500}{9} \right) [/mm] + [mm] \left( \bruch{2100}{9} \right) [/mm]

    

     =0,09*(t- [mm] \left\bruch{50}{3} \right)^2-4 [/mm]

Zunächst ist ja klar, dass man 0,09 ausklammert und dividiert.
Aber was wurde beim 2.und 3.Schritt gemacht ?

mfg
Mim

        
Bezug
Scheitelpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Di 28.04.2009
Autor: Al-Chwarizmi

Hallo Mimic,


> Wie wurde hier der Scheitelpunkt berechnet ?
>  
> f(t)= [mm]0,09t^2-3t[/mm] + 21
>    
> [mm]=0,09*(t^2-[/mm] [mm]\left( \bruch{100}{3} \right)[/mm] t +  [mm]\left( \bruch{700}{3} \right)[/mm]

Hier fehlt am Schluss eine Klammer.
  

> [mm]=0,09*(t^2-[/mm] [mm]\left( \bruch{100}{3} \right)*t+\left( \bruch{2500}{9} \right)+\left( \bruch{2100}{9} \right)[/mm]     [notok]

Dies sollte eigentlich quadratische Ergänzung sein.
Es fehlt aber die Korrektur durch Subtraktion des
hinzugefügten Terms [mm] \bruch{2500}{9} [/mm] sowie wieder
die Klammer am Schluss.
  

> =0,09*(t- [mm]\left\bruch{50}{3} \right)^2-4[/mm]

Dies ist das (richtige) Schlussergebnis, aus welchem man
die Scheitelpunktskoordinaten
[mm] u=\bruch{50}{3} [/mm] und v=-4 ablesen kann.

>  
> Zunächst ist ja klar, dass man 0,09 ausklammert und
> dividiert.
>  Aber was wurde beim 2.und 3.Schritt gemacht ?


LG     Al-Chw.


Bezug
                
Bezug
Scheitelpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Di 28.04.2009
Autor: Mimic

Könntest du mir, dass nicht einmal bitte in den einzelnen Schritten erklären ?

Weil ich verstehe  z.b nicht, wie man auf die [mm] \bruch{2500}{9} [/mm]   kommt und insgesamt den dritten Schritt nicht.

Bezug
                        
Bezug
Scheitelpunkt: quadratische Ergänzung
Status: (Antwort) fertig Status 
Datum: 17:19 Di 28.04.2009
Autor: Loddar

Hallo Mimic!


> Weil ich verstehe  z.b nicht, wie man auf die
> [mm]\bruch{2500}{9}[/mm]   kommt und insgesamt den dritten Schritt nicht.

Nimm das Glied vor dem $t_$ (ohne Quadrat), teile es durch 2 und quadriere das Ergebnis: dies ist die quadratische Ergänzung.

Hier:
[mm] $$\bruch{100}{3} [/mm] \ [mm] \longrightarrow [/mm] \ [mm] \bruch{\bruch{100}{3}}{2} [/mm] \ = \ [mm] \bruch{50}{3} [/mm] \ [mm] \longrightarrow [/mm] \ [mm] \left(\bruch{50}{3}\right)^2 [/mm] \ = \ [mm] \bruch{2500}{9}$$ [/mm]
Dieser Term wird nun addiert und anschließend gleich wieder abgezogen, um die Gleichung nicht zu verändern.

Dann wird auf den vorderen Part die MBbinomische Formel angewandt.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]