matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesSchar einer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Schar einer Funktion
Schar einer Funktion < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schar einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Mi 11.07.2007
Autor: princessofmath

Aufgabe
also
> gegeben sei eine schar reeler Funktionen
> f von t von (x) also ft(x) = x ( x² - t ) mit t € R
> der Graph der SCharfunktion f (t) heißte G (t)
>
> also
> (1) zeige, dass für t1 ungleich t2 die Graphen G(t1) und G (t2) genau einen
> Punkt gemeinsam haben, und gib dessen Koordinaten an.
>
> (2) Bestimme t(3) so, dass der Graph G (t3) den Graphen G(t1) rechtwinklig
> schneidet.
> Zeichne G(-1) in die Skizze der Aufgabe


Ich stehe voll auf den Schlauch und wäre über jeden Tipp dankbar... Wie kann ich überhaupt anfangen???

Danke im Vorraus :)

        
Bezug
Schar einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Mi 11.07.2007
Autor: Somebody


> also
>  > gegeben sei eine schar reeler Funktionen

>  > f von t von (x) also ft(x) = x ( x² - t ) mit t €

> R
>  > der Graph der SCharfunktion f (t) heißte G (t)

>  >

> > also
>  > (1) zeige, dass für t1 ungleich t2 die Graphen G(t1) und

> G (t2) genau einen
> > Punkt gemeinsam haben, und gib dessen Koordinaten an.
>  >

> > (2) Bestimme t(3) so, dass der Graph G (t3) den Graphen
> G(t1) rechtwinklig
> > schneidet.
>  > Zeichne G(-1) in die Skizze der Aufgabe

>  
> Ich stehe voll auf den Schlauch und wäre über jeden Tipp
> dankbar... Wie kann ich überhaupt anfangen???

Zu (1): Indem Du die Frage liest und einfach in mathematische Form (sprich, hier: Gleichung) bringst. Du kannst also, mit anderen Worten, einfach einmal die Schnittgleichung

[mm]x(x^2-t_1) = x(x^2-t_2)[/mm]


aufstellen und beim Auflösen nach $x$ verwenden, dass [mm] $t_1\neq t_2$ [/mm] ist (wäre [mm] $t_1=t_2$ [/mm] hätte die Gleichung natürlich ganz [mm] $\IR$ [/mm] als Lösungsmenge, weil die Graphen dann identisch wären). Ergebnis: $x=0$ ist die einzige Lösung der obigen Schnittgleichung, falls [mm] $t_1\neq t_2$ [/mm] ist. D.h. $S(0|0)$ ist der einzige Schnittpunkt der beiden Graphen.

Zu (2): Dass [mm] $G(t_3)$ [/mm] den Graphen [mm] $G(t_1)$ [/mm] senkrecht schneidet, bedeutet einfach, dass die Tangentensteigungen [mm] $m_1, m_2$ [/mm] im Schnittpunkt die Bedingung [mm] $m_1\cdot m_3=-1$ [/mm] erfüllen müssen. Wo der Schnittpunkt liegt, weisst Du aufgrund Deiner Antwort auf (1): bei $x=0$.
[mm] $m_1$ [/mm] bzw. [mm] $m_3$ [/mm] sind einfach die Werte der ersten Ableitung von [mm] $f_{t_1}(x)$ [/mm] bzw. [mm] $f_{t_3}(x)$ [/mm] an der betreffenden Stelle $x=0$.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]