matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikSchallwellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Schallwellen
Schallwellen < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schallwellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:40 Do 09.07.2015
Autor: Ricardo1990

Aufgabe
a.)Geben Sie die Wellengleichung für eine ebene Schallwelle und eine mögliche Lösung an! Benennen Sie die auftretenden Größen!

b.)Berechnen Sie die Reichweite eines Redners mit einer Stimmlage von etwa 1 kHz. Die mittlere freie Weglänge beträgt 0.2μm.

a.) [mm] \bruch{1}{c^{2}}\bruch{\partial^{2}u}{\partial*t^{2}}-\bruch{\partial^{2}u}{\partial*x^{2}}=0 [/mm]

u(x,t)=f(x+ct)+g(x-ct)

[mm] \partial=Partiale [/mm] Ableitung
u=Funktion
t=Zeit
x=Ort bzw Koordinate
c=Geschwindigkeit

b.)

[mm] f=\bruch{c}{\lambda}\to\lambda=\bruch{c}{f}=0,33m [/mm]
[mm] A=\bruch{c}{2\pi*f}=5,252*10^{-2}m [/mm]

A=Auslenkung des Luftmoleküls
[mm] c=330\bruch{m}{s} [/mm]

Die Anzahl der Zusammenstöße der Luftmoleküle ist also gleich [mm] \bruch{A}{mittlere freie Weglänge}=2,626*10^{5} [/mm]

Jetzt weiss ich nicht weiter ... Eigentlich müsste ich doch die Anzahl der Zusammenstöße mal die mittlere freie Weglänge nehmen aber dann hätte ich wieder A ?! ... Kapiers nich ...

Bei a.) bin ich mir auch nicht so sicher mit der Möglichen Lösung, die hab ich aus einem Buch aber sagen tut mir das nichts ...

        
Bezug
Schallwellen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Do 09.07.2015
Autor: leduart

Hallo
c ist die Ausbreitungsgeschw. der Wellen, nicht die Geschw. der Teilchen
bei a) waere sin oder cos eine geeignete Loesung, nicht dieser allgemeine Ansatz
.
Gruss ledum

Bezug
                
Bezug
Schallwellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 Do 09.07.2015
Autor: Ricardo1990

Also deine Antwort für a.) verstehe ich =) Wunderbar dann ist es [mm] u_{Spitze}*sin(2\pi(ft-\bruch{x}{\lambda})) [/mm]

Aber was willst du mir sagen mit "c ist die Ausbreitungsgeschwindigkeit der Welle" ? Ja so hab ich es ja auch gerechnet. Oder meintest du weil ich nur "Geschwindigkeit" als Erklärung geschrieben habe ?

Bezug
                        
Bezug
Schallwellen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Fr 10.07.2015
Autor: leduart

Hallo
ich verstehe deine formel fuer A nicht. wieso ist die Auslenkung der Teilchen [mm] \lambda/2\pi? [/mm]
Aber das kann auch mein mangelndes wissen sein.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]