matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSchätzproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Schätzproblem
Schätzproblem < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzproblem: Max.-Likelihood-Schätzer
Status: (Frage) beantwortet Status 
Datum: 21:32 Mi 15.06.2005
Autor: JROppenheimer

Ich hoffe, dass ich die nächsten 3 Wochen noch überstehe. ... hab nämlich kein Bock scheiss Stochastik nochmal zu machen ... das brennt mir löcher ins Hirn.

Gegeben seien die Realisierungen  [mm] x_{1},..., x_{n} [/mm] unabhängiger, identisch  [mm] \IP_{ \nu} [/mm] verteilte Zufallsvariablen, wobei [mm] \IP_{ \nu} [/mm] die Gleichverteilung auf dem Intervall [mm] [0,\nu] [/mm] bezeichne. Der Parameter [mm] \nu \in (0,\infty) [/mm] sei unbekannt und soll aus den Realisierungen geschätzt werden.
Jetzt soll ich das Schätzproblem VOLLSTÄNDIG (was auch immer die damit meinen) aufschreiben und den ML-schätzer für den Parameter [mm] \nu [/mm] bestimmen.

Wenn mir mal einer eine Eingebung geben könnte, I WOULD BE GREATFUL!

Ich habe diese Frage in keinem anderen Forum gestellt!

        
Bezug
Schätzproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Do 16.06.2005
Autor: Stefan

Hallo!

Die Dichte einer [mm] $P_{\nu}$-verteilten [/mm] Zufallsvariable ist natürlich durch

$f(x) = [mm] \frac{1}{\nu} \cdot 1_{[0,\nu]}(x)$ [/mm]

gegeben. Daher ergibt sich als Likelihood-Funktion für [mm] $(x_1,\ldots,x_n) \in (0,+\infty)^n$: [/mm]

[mm] $L(\nu;x_1,\ldots,x_n) [/mm] = [mm] \left\{ \begin{array}{ccc} \left( \frac{1}{\nu} \right)^n & , & \mbox{falls} \ x_i \le \nu \quad \mbox{für alle} \ i=1,\ldots,n,\\[5pt] 0 & , & \mbox{sonst}. \end{array} \right.$ [/mm]

Es gilt: [mm] $L(\nu;x_1,\ldots,x_n)=0$, [/mm] falls es ein [mm] $x_i>\nu$ [/mm] gibt. Die Funktion hat nichtnegative Werte und ist streng monoton fallend auf [mm] $[\max\{x_1,\ldots,x_n\},+\infty[$. [/mm] Daher nimmt sie ihr Maximum bei

[mm] $\hat{\nu} [/mm] = [mm] \max\{x_1,\ldots,x_n\}$ [/mm]

an. Damit ist [mm] $\max\{x_1,\ldots,x_n\}$ [/mm] ein Maximum-Likelihood-Schätzer für [mm] $\nu$. [/mm]

Ist ja auch intuitiv völlig klar, wie ich finde...

Viele Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]