matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSchätzer zu Zufallsvariablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Schätzer zu Zufallsvariablen
Schätzer zu Zufallsvariablen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzer zu Zufallsvariablen: Berechnung
Status: (Frage) beantwortet Status 
Datum: 22:37 Mi 10.06.2009
Autor: stevies

Aufgabe
X1,X2,X3 seien unabhängig und identisch verteilte  Zufallsvariablen mit Erwartungswert μ und Varianz 2.

Um μ zu schätzen, verwendet man die Schätzer:

U = (X2 + 2X3)/3
V = (X1 + X2)/2
W = (X1 + 2X2 + X3)/3

(a) Berechnen Sie den Bias für die Schätzer und stellen Sie fest, welche Schätzer erwartungstreu
sind!

(b) Berechnen Sie die Varianzen der Schätzer!

(c) Einen erwartungstreuen Schätzer fasst man als besser auf als einen anderen erwartungstreuen
Schätzer, wenn er eine kleinere Varianz besitzt. Welcher der drei Schätzer ist der beste erwartungstreue Schätzer für μ?

Also wenn ich die Aufgabe richtig verstanden habe, dann sind U,V und W alles drei Schätzer. Ich soll nun den Bias (Verzerrung) für alle drei Schätzer berechnen.

Leider verstehe ich die Formel bei mir im Skript irgendwie nicht:

[mm] Bias(T)=E\nu(T)-\nu [/mm]


Ich möchte nicht das Ergebnis wissen (das habe ich schon) sondern eigentlich nur, wie ich die Verzerrung berechnen kann. Danke.

        
Bezug
Schätzer zu Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:34 Do 11.06.2009
Autor: luis52

Moin,

>  
> [mm]Bias(T)=E\nu(T)-\nu[/mm]
>  
> Ich möchte nicht das Ergebnis wissen (das habe ich schon)
> sondern eigentlich nur, wie ich die Verzerrung berechnen
> kann. Danke.

Die Formel besagt, dass die Abweichung des Erwartungswertes, also [mm] $\operatorname{E}\nu(T)$, [/mm] vom zu schaetzenden Parameter, also [mm] $\nu$, [/mm] zu berechnen ist. Im ersten Fall ist also beispielsweise [mm] $\operatorname{E}\mu(U)-\mu$ [/mm] zu bestimmen.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]