matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Schätzer
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Statistik (Anwendungen)" - Schätzer
Schätzer < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzer: Maximum-Likelihood-Schätzer
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 01.01.2008
Autor: jumape

Aufgabe
Seien [mm] (X_i)_{i\in\IN} [/mm] unabhängig und Poissonverteilt [mm] P_\lambda. [/mm] Bestimmen Sie den Maximum-Likelihood-schätzer für [mm] \lambda. [/mm]

Also wenn ich Maximum-Likelihood jetzt richtig verstanden habe muss ich den ln auf die Funktion schicken, sie dann nach [mm] \lambda [/mm] ableiten und 0 setzen.
Ich habe allerdings ein Problem damit, dass das Produkt nicht endlich ist.
Mein Ansatz wäre:
F(k)= [mm] e^{-\lambda} \bruch {\lambda^k}{k!} [/mm]
nun wende ich den ln darauf an und erhalte:
[mm] -\lambda+k ln\lambda [/mm] - ln(k!)
dies leite ich nach [mm] \lambda [/mm] ab und erhalte:
[mm] -1+k\bruch{1}{\lambda} [/mm]
Wenn ich dies 0 setze bekomme ich für [mm] \lambda: [/mm]
[mm] \lambda=k [/mm]

Es wäre nett wenn das mal jemand kommentieren könnte.

        
Bezug
Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Di 01.01.2008
Autor: Blech


> Seien [mm](X_i)_{i\in\IN}[/mm] unabhängig und Poissonverteilt
> [mm]P_\lambda.[/mm] Bestimmen Sie den Maximum-Likelihood-schätzer
> für [mm]\lambda.[/mm]
>  Also wenn ich Maximum-Likelihood jetzt richtig verstanden
> habe muss ich den ln auf die Funktion schicken, sie dann
> nach [mm]\lambda[/mm] ableiten und 0 setzen.

Nein!

Das ist nur etwas Mechanik, mit der man oft weiterkommt. ML heißt, Du nimmst als Schätzer für den gesuchten Parameter den Wert, für den die Wahrscheinlichkeit, daß Du Deine gegebene Stichprobe ziehst, am größten ist.

Und das machen wir jetzt:

Wenn wir n unabhängige [mm] $P_\lambda$ [/mm] verteilte ZV [mm] X_i [/mm] haben, dann ist die Wahrscheinlichkeit, für ein bestimmtes Ergebnis [mm] $(k_1,\dots,k_n)\in\IN_0$: [/mm]

[mm] $P_\lambda ((X_1,\dots,X_n)=(k_1,\dots,k_n))=\produkt_{i=1}^{n}P_\lambda (X_i=k_i)$, [/mm] da die ZV unabhängig sind.

Damit haben wir:
[mm] $P_\lambda((X_1,\dots,X_n)=(k_1,\dots,k_n))=\produkt_{i=1}^{n} e^{-\lambda}\frac{\lambda^{k_i}}{k_i!}=e^{-n\lambda} \lambda^{n\overline{k}}\produkt_{i=1}^{n} \frac{1}{k_i!}$ [/mm]
wobei [mm] $\overline{k}$ [/mm] das arithmetische Mittel der [mm] $k_i$ [/mm] ist.


Jetzt ziehen wir eine Stichprobe, [mm] $h_1,\dots,h_n$, [/mm] für die wir den MLE bestimmen wollen.
D.h. wir suchen das [mm] $\lambda$, [/mm] für das [mm] $P_\lambda((X_1,\dots,X_n)=(h_1,\dots,h_n))$ [/mm] maximal wird.

Da das eine Funktion von [mm] $\lambda$ [/mm] ist und die [mm] $h_i$ [/mm] die Parameter sind, ändern wir die Notation. Wir haben die Likelihood-Funktion
[mm] $L(h_1,\dots,h_n;\lambda)=e^{-n\lambda} \lambda^{n\overline{h}}\produkt_{i=1}^{n} \frac{1}{h_i!}$ [/mm]
und suchen das Maximum in Abhängigkeit von [mm] $\lambda$. [/mm]

Dafür können wir den Logarithmus nehmen (macht hier kaum einen Unterschied):
[mm] $l(h_1,\dots,h_n;\lambda)=-n\lambda+n\overline{h}\ln\lambda [/mm] + [mm] \ln\left(\produkt_{i=1}^{n} \frac{1}{h_i!}\right)$ [/mm]

Ableiten und gleich 0 setzen:
[mm] $\frac{d\ l}{d\lambda}=-n+\frac{n\overline{h}}{\lambda}=0$ [/mm]
[mm] $\Rightarrow \lambda=\overline{h}$ [/mm]

Die zweite Ableitung ist kleiner 0, d.h. es ist ein Maximum.

Damit ist der MLE für die Intensität einer Poissonverteilung einfach das Stichprobenmittel

> [snip]
> Es wäre nett wenn das mal jemand kommentieren könnte.

Handwerklich machst Du das meiste richtig. Aber weil Du nur die Mechanik kennst, beginnst Du mit der falschen Funktion und kannst das Ergebnis nicht interpretieren. =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]