matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSchätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Schätzer
Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 Fr 30.05.2014
Autor: Cyborg

Aufgabe 1
Bestimmen Sie mit der Momentenmethode den Schätzer für die Binomialverteilung Bin (n,p), wenn die Stichprobe die Größe m hat. Verwenden Sie dabei nur das erste Moment.

Aufgabe 2
Die Varianz von Bin(n,p) ist np(1-p). Jemand schlägt vor, das Ergebnis [mm] \overline{X}_m/n [/mm] für die Schätzung der Varianz einzusetzen, indem man den Schätzer [mm] n*\bruch{\overline{X}_m}{n}(1-\bruch{\overline{X}_m}{n}) [/mm] benutzt. Berechnen Sie den Erwartungswert und prüfen Sie auf Erwartungstreue. Dabei können Sie verwenden, dass das zweite Moment von Bin(n,p) gleich [mm] (n^2 -n)p^2+np [/mm] ist.

Hallo, ich habe mich jetzt erstmal nur mit Aufgabe 1 beschäftigt:

Unser Dozent meinte als Hinweis, dass wir entweder n oder p schätzen müssen. Ich habe dann mal mit n angefangen:

[mm] E(x_1) [/mm] = np

n= [mm] \bruch{E(x_1)}{p} [/mm] = [mm] \bruch{\overline{X}_m}{p} [/mm]

Muss ich jetzt nur noch auf Erwartungstreue, Konsitenz und asymptotische Erwartungstreue testen?

        
Bezug
Schätzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Sa 31.05.2014
Autor: Cyborg

bin ich denn auf dem richtigen Weg?

Bezug
        
Bezug
Schätzer: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 So 01.06.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Schätzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 So 01.06.2014
Autor: Cyborg

bin ich denn auf dem richtigen Weg?

Bezug
        
Bezug
Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 01.06.2014
Autor: luis52

Moin, der Tipp deines Dozenten macht nur dann Sinn, wenn $n$ oder $p$ gegeben sind.

>
> [mm]E(x_1)[/mm] = np
>  
> n= [mm]\bruch{E(x_1)}{p}[/mm] = [mm]\bruch{\overline{X}_m}{p}[/mm]

Besser: [mm] $\red{\hat n}=\frac{\overline{X}_m}{p}$ [/mm] (bei gebenem $p$)

Wo ist der Schaetzer fuer $p$?

Nicht bei Aufgabe 1.



>  
> Muss ich jetzt nur noch auf Erwartungstreue, Konsitenz und
> asymptotische Erwartungstreue testen?  


Nicht bei Aufgabe 1.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]