matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Schätzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Statistik (Anwendungen)" - Schätzen
Schätzen < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Mi 16.03.2011
Autor: Pille456

Aufgabe
Ein Meinungsforschungsinstitut möchte den Prozentsatz p der Wahlberechtigten ermitteln,
die bei der nächsten Wahl Partei X wählen. Dafür werden n Wahlberechtigte befragt,
und der Prozentsatz der Wähler von Partei X in der Stichprobe wird als Schätzung für p
genommen. Wie groß muss n gewählt werden, um p auf 0.5% (1%) Genauigkeit mit 99%
(95%) Sicherheit zu schätzen?


Hi!

Also zum Schätzen fiel mir folgender Satz ein:
"Der erforderliche Stichprobenumfang bei einem Bernoulli-Experiment mit unbekannter Erfolgswahrscheinlichkeit p, sodass [mm] P_p(-\varepsilon\le p'-p\le\varepsilon)\ge \alpha [/mm] ist gegeben durch
[mm] n=\bruch{c^2}{4*\varepsilon} [/mm] wobei c die Lösung von [mm] \Phi(c)=\bruch{\alpha+1}{2} [/mm] ist" (p' ist die geschätzte Wahrscheinlichkeit und p die tatsächliche)

In diesem Fall ist dann [mm] \varepsilon=0.0005(0.0001) [/mm] und [mm] \alpha=0.01(0.05) [/mm] wenn ich das richtig verstehe.
[mm] \Phi(c) [/mm] ist soweit ich weiß die Normalverteilung.
Nun wird im Skript immer auf eine "Tabelle der Normalverteilungen" verwiesen. Muss ich immer in diese Tabelle schauen bzw. die allgemein Formel der Normalverteilung umformen, um so eine Aufgabe zu lösen oder geht das auch einfacher?

Gruß
Pille

        
Bezug
Schätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mi 16.03.2011
Autor: luis52

Moin


> wobei c die Lösung von
> [mm]\Phi(c)=\bruch{\alpha+1}{2}[/mm] ist" (p' ist die geschätzte
> Wahrscheinlichkeit und p die tatsächliche)
>  

> Nun wird im Skript immer auf eine "Tabelle der
> Normalverteilungen" verwiesen. Muss ich immer in diese
> Tabelle schauen bzw. die allgemein Formel der
> Normalverteilung umformen, um so eine Aufgabe zu lösen
> oder geht das auch einfacher?

Ja, es folgt naemlich

[mm] $c=\Phi^{-1}\left(\frac{\alpha+1}{2} \right)$. [/mm]

D.h. $c_$ ist ein Prozentpunkt der Normalverteilung, die in jedem vernuenftigen Skript tabelliert sind.

vg Luis




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]