matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieSatz von Wilson
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Satz von Wilson
Satz von Wilson < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Wilson: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 Mi 03.02.2010
Autor: T_sleeper

Aufgabe
Sei [mm] p\equiv [/mm] 3 mod 4 Primzahl. Beweise mit dem Satz von Wilson:
[mm] ((\frac{p-1}{2})!)\equiv1\,\,\,\mbox{mod }p [/mm]

Hallo,

der Satz von Wilson sagt: [mm] (p-1)!\equiv [/mm] -1 mod p.
Dann weiß ich, dass [mm] ((p-1)!)^2\equiv [/mm] 1 mod p ist, aber wieso kann ich aus der Fakultät die zwei rauskürzen und das gilt immer noch?

        
Bezug
Satz von Wilson: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Mi 03.02.2010
Autor: SEcki


> Sei [mm]p\equiv[/mm] 3 mod 4 Primzahl. Beweise mit dem Satz von
> Wilson:
>  [mm]((\frac{p-1}{2})!)\equiv1\,\,\,\mbox{mod }p[/mm]
>  Hallo,
>  
> der Satz von Wilson sagt: [mm](p-1)!\equiv[/mm] -1 mod p.
>  Dann weiß ich, dass [mm]((p-1)!)^2\equiv[/mm] 1 mod p ist, aber
> wieso kann ich aus der Fakultät die zwei rauskürzen und
> das gilt immer noch?

Also ich lese das so: Erst p-1 durch 2 teilen, dann Fakultät. Also zB bei der 19 wäre das [m]9! \mbox{ mod } 19[/m]. Das sind die Hälfte aller Zahlen, wobei mit x eben [m]-x[/m] nicht drin ist. Wenn du also das Produkt quadriest erhälst du mit Wilson 1 - jetzt musst du dir überlegen, dass die Zahl vorher schon 1 war, und nicht -1. Dazu muss man benutzen, dass [m](p-1)/2[/m] ungerade ist - nach Vorraussetzung! Hast du jetzt Ideen?

SEcki

Bezug
        
Bezug
Satz von Wilson: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Do 04.02.2010
Autor: SEcki


> Sei [mm]p\equiv[/mm] 3 mod 4 Primzahl. Beweise mit dem Satz von
> Wilson:
>  [mm]((\frac{p-1}{2})!)\equiv1\,\,\,\mbox{mod }p[/mm]
>  Hallo,
>  
> der Satz von Wilson sagt: [mm](p-1)!\equiv[/mm] -1 mod p.
>  Dann weiß ich, dass [mm]((p-1)!)^2\equiv[/mm] 1 mod p ist, aber
> wieso kann ich aus der Fakultät die zwei rauskürzen und
> das gilt immer noch?

Also mal ausfürhlicher: sei [m]X=\{k|1\le k \le (p-1)/2\}[/m]. Dann ist mit [m]x\in X[/m] allerdings [m]-x\notin X[/m]. Nun definiere ich [m]y:=\prod_{x\in X} x[/m], damit ist [m]\prod_{x\in X} (-x)=(-1)^{(p-1)/2}*y=-y[/m]. Insgesamt also (nach Wilson): [m]y*(-y)=-1[/m], also [m]y^2=1[/m], also [m]y=\pm 1[/m]. Du musst noch [m]y=1[/m] folgern, seh ich gerade nicht.

SEcki

Bezug
        
Bezug
Satz von Wilson: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 Do 04.02.2010
Autor: abakus

Hallo,
offensichtlich gilt
[mm] (p-1)\equiv [/mm] -1 mpd p
[mm] (p-2)\equiv [/mm] -2 mpd p
[mm] (p-3)\equiv [/mm] -3 mpd p
usw.

Damit lassen die Faktoren in der "vorderen Häflte" von (p-1)! (also 1 bis (p-1)/2) jeweils die entgegengesetzten Reste wie die Faktoren in der hinteren Hälfte (von p-1 an abwärts bis zur Mitte).
Hilft das beim Verständnis?
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]