matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSatz von Picard-Lindelöf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Satz von Picard-Lindelöf
Satz von Picard-Lindelöf < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Picard-Lindelöf: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:26 Do 05.11.2009
Autor: raubkaetzchen

Aufgabe
Beweisen sie mittels weißingerschen Fixpunktsatz den Satz von Picard-Lindelöf.
Dazu wird wieder das AWP x'=f(x), x(0)=a für eine L-stetige Fkt.
f: [mm] \IR^{n} [/mm] -> [mm] \IR^{n} [/mm] auf einem Intervall I=(-T,T) betrachtet.

Weisen sie dazu insbesondere nach, dass die n-ten Potenzen des Integraloperators G: [mm] C(I,\IR^{n})->C(I,\IR^{n}), [/mm]
G(x)(t)=a + [mm] \integral_{0}^{t}{f(x(s)) ds} [/mm]
die L-Konstante [mm] \bruch{(LT)^{n}}{n!} [/mm] besitzen.

Hallo alle zusammen.

Der Beweis dieses Satzes soll mit dem Weißingerschen Fixpunktsatz bewiesen werden.

Ich muss also einen Fixpunkt von G finden, der dann natürlich Lösung des AWP wäre.


Ich habe versucht zu zeigen, dass die n-te potenz des integraloperators eben diese L-Konstante besitzt.
Leider ist mir das bisher nicht geglückt.
Ich habe versucht dies durch vollständige induktion zu machen, nur ergibt sich bei mir das Problem mit dem "n!" im nenner.

Also induktionsstart für n=0 und n=1 klappt.
Nur ist meine Abschätzung gröber, d.h. ohne das n!. wie kriege ich das n! rein?



Wäre nett wenn ihr mir helfen könntet

Gruß

        
Bezug
Satz von Picard-Lindelöf: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Sa 07.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]