matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenSatz von Peano
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Satz von Peano
Satz von Peano < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Peano: Tipp
Status: (Frage) überfällig Status 
Datum: 17:18 Di 10.11.2009
Autor: raubkaetzchen

Aufgabe
Zeigen sie, dass f keine L-Bedingung auf R erfüllt.

R={(t,x) [mm] \in \IR^{2} [/mm] : |t|,|x|<1}

und [mm] f(t,x)=\begin{cases} 0, & \mbox{für } t=0,|x|\le1 \\ 2t, & \mbox{für } 0<|t| \le 1,-1 \le x<0 \\ 2t-4x/t & \mbox{für } 0<|t| \le 1, 0 \le x \le t^{2} \\ -2t, & \mbox{für } 0<|t| \le 1, t^{2} \le x \le 1\end{cases} [/mm]

Hallo alle zusammen.

Vorher musste ich zeigen, dass f auf R stetig ist, das habe ich auch.

So nun muss man zeigen, dass f keine L-Bedingung erfüllt.
Ich denke mal das heißt nur, dass f nicht L-stetig ist.

ich habe versucht mit der Definition der L-stetigkeit zu arbeiten.
Aber so komme ich nicht ans ziel.
(also sei L>0 gegeben, dann gibt es immer [mm] y_1,y_2 \in [/mm] R s.d....usw.)

Nachdem ich so nicht ans ziel kam, wollte ich versuchen, ein Anfangswertproblem für y'=f(t,y) zu konstruieren, welches zwei Lösungen y und [mm] y_p [/mm] hat.
Dann würde aus dem Satz von Picard-Lindelöf folgen, dass f nicht L-stetig sein kann.

Bisher bin ich aber so auch nicht sehr weit gekommen.

Könnt ihr mir vielleicht einen Tipp geben, wie ich ein AWP konstruieren kann, bzw. wie ich die Aufgabe am besten lösen sollte.

Vielen Dank für eure Hilfe

Gruß

        
Bezug
Satz von Peano: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Di 10.11.2009
Autor: MatthiasKr

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hi,

> Zeigen sie, dass f keine L-Bedingung auf R erfüllt.
>  
> R={(t,x) [mm]\in \IR^{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

: |t|,|x|<1}

>  
> und [mm]f(t,x)=\begin{cases} 0, & \mbox{für } t=0,|x|\le1 \\ 2t, & \mbox{für } 0<|t| \le 1,-1 \le x<0 \\ 2t-4x/t & \mbox{für } 0<|t| \le 1, 0 \le x \le t^{2} \\ -2t, & \mbox{für } 0<|t| \le 1, t^{2} \le x \le 1\end{cases}[/mm]
>  
> Hallo alle zusammen.
>  
> Vorher musste ich zeigen, dass f auf R stetig ist, das habe
> ich auch.
>  
> So nun muss man zeigen, dass f keine L-Bedingung erfüllt.
>  Ich denke mal das heißt nur, dass f nicht L-stetig ist.
>  
> ich habe versucht mit der Definition der L-stetigkeit zu
> arbeiten.
>  Aber so komme ich nicht ans ziel.
>  (also sei L>0 gegeben, dann gibt es immer [mm]y_1,y_2 \in[/mm] R
> s.d....usw.)
>  
> Nachdem ich so nicht ans ziel kam, wollte ich versuchen,
> ein Anfangswertproblem für y'=f(t,y) zu konstruieren,
> welches zwei Lösungen y und [mm]y_p[/mm] hat.
>  Dann würde aus dem Satz von Picard-Lindelöf folgen, dass
> f nicht L-stetig sein kann.
>  
> Bisher bin ich aber so auch nicht sehr weit gekommen.

hm, knifflige aufgabe. Habe leider auch keine loesung fuer dich, aber ich denke du solltest dabei bleiben, die funktion auf L-stetigkeit zu untersuchen. Glaube kaum, dass du fuer diese funktion eine diff-gleichung loesen kannst... ;-)

du hast dir bestimmt schon mal aufgemalt, wie das (t,x)-einheitsquadrat aufgeteilt ist in die jeweiligen definitionsbereiche, oder? Man kann vermuten, dass probleme an denjenigen stellen auftreten, wo zwei oder mehrere def-bereiche aneinandergrenzen, also zb. im nullpunkt. Eine Idee waere es, in solchen punkten (oder zb. auf der parabel [mm] $(x,t)=(t^2,t)$) [/mm] die differenzenquotienten in verschiedene richtungen (t-achse,x-achse, weitere?) zu untersuchen, und zu schauen, ob diese irgendwo unbegrenzt gross werden koennen. Dann haettest du L-stetigkeit widerlegt.

gruss
Matthias

Bezug
        
Bezug
Satz von Peano: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 12.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]