matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSatz von Gauß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Satz von Gauß
Satz von Gauß < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Mi 25.11.2015
Autor: Rebellismus

Aufgabe
Gegeben sei eine Fläche mit der Parametrisierung

[mm] \phi(r,v)=\vektor{r*cosv \\ rsinv \\ r} [/mm] mit [mm] D=[0,2]\times[0,2\pi] [/mm]

Außerdem sei ein Vektorfeld gegeben durch

[mm] w(x,y,z)=\vektor{x^3 \\ x^2*y \\ -y^2*z} [/mm]

a) Berechnen Sie den Fluss des Vektorfeldes durch die Fläche direkt, d.h. durch ein Oberflächenintegral

Hinweis: Beachten Sie, dass der Normalvektor nach außen zeigt.

b) Lösen Sie die Aufgabe über ein Volumenintegral mit dem Satz von Gauß



a)

Bei Oberflächenintegrale für vektorfelder muss ich [mm] \phi_r(r,v)\times\phi_v(r,v) [/mm] statt [mm] |\phi_r(r,v)\times\phi_v(r,v)| [/mm] bestimmen richtig ?
(bitte diese Frage beantworten. Habe die erfahrung gemacht, dass zwischenfrage hier oft ignoriert werden)

[mm] \phi_r(r,v)\times\phi_v(r,v)=\vektor{-r*cosv \\ -r*sinv \\ r} [/mm]

Damit der Normalvektor nach außen zeigt, muss gelten:

[mm] n=-(\phi_r(r,v)\times\phi_v(r,v))=\vektor{r*cosv \\ r*sinv \\ -r} [/mm]

[mm] w(\phi(r,v))=\vektor{r^3*cos^3v \\ r^2*cos^2v*r*sinv \\ -r^2*sin^2v*r} [/mm]

[mm] w(\phi(r,v))*n=r^4 [/mm]

[mm] \integral_{0}^{2\pi}\integral_{0}^{2}{r^4drdv}=\bruch{64}{5}\pi [/mm]

stimmt die Lösung?

        
Bezug
Satz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mi 25.11.2015
Autor: fred97


> Gegeben sei eine Fläche mit der Parametrisierung
>
> [mm]\phi(r,v)=\vektor{r*cosv \\ rsinv \\ r}[/mm] mit
> [mm]D=[0,2]\times[0,2\pi][/mm]
>  
> Außerdem sei ein Vektorfeld gegeben durch
>  
> [mm]w(x,y,z)=\vektor{x^3 \\ x^2*y \\ -y^2*z}[/mm]
>  
> a) Berechnen Sie den Fluss des Vektorfeldes durch die
> Fläche direkt, d.h. durch ein Oberflächenintegral
>  
> Hinweis: Beachten Sie, dass der Normalvektor nach außen
> zeigt.
>  
> b) Lösen Sie die Aufgabe über ein Volumenintegral mit dem
> Satz von Gauß
>  
> a)
>  
> Bei Oberflächenintegrale für vektorfelder muss ich
> [mm]\phi_r(r,v)\times\phi_v(r,v)[/mm] statt
> [mm]|\phi_r(r,v)\times\phi_v(r,v)|[/mm] bestimmen richtig ?
>  (bitte diese Frage beantworten. Habe die erfahrung
> gemacht, dass zwischenfrage hier oft ignoriert werden)
>  
> [mm]\phi_r(r,v)\times\phi_v(r,v)=\vektor{-r*cosv \\ -r*sinv \\ r}[/mm]
>  
> Damit der Normalvektor nach außen zeigt, muss gelten:
>  
> [mm]n=-(\phi_r(r,v)\times\phi_v(r,v))=\vektor{r*cosv \\ r*sinv \\ -r}[/mm]
>  
> [mm]w(\phi(r,v))=\vektor{r^3*cos^3v \\ r^2*sin^2v*r*sinv \\ -r^2*sin^2v*r}[/mm]
>  
> [mm]w(\phi(r,v))*n=r^4[/mm]

Wie kommst Du darauf ?

FRED

>  
> [mm]\integral_{0}^{2\pi}\integral_{0}^{2}{r^4drdv}=\bruch{64}{5}\pi[/mm]
>  
> stimmt die Lösung?


Bezug
                
Bezug
Satz von Gauß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 Mi 25.11.2015
Autor: Rebellismus


> > [mm]w(\phi(r,v))*n=r^4[/mm]
>  
> Wie kommst Du darauf ?

[mm] w(\phi(r,v))*n=\vektor{r^3*cos^3v \\ r^2*cos^2v*r*sinv \\ -r^2*sin^2v*r}*\vektor{r*cosv \\ r*sinv \\ -r}=r^4*cos^4v+r^4cos^2v*sin^2v+r^4*sin^2v=r^4(cos^4v+cos^2v*sin^2v+sin^2v) [/mm]

[mm] =r^4(cos^4v+cos^2v*(1-cos^2v)+sin^2v)=r^4(cos^4v+cos^2v-cos^4v+sin^2v)=r^4(cos^2v+sin^2v)=r^4 [/mm]

die beiden fragen im ersten beitrag sind noch offen

Bezug
        
Bezug
Satz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Mi 25.11.2015
Autor: leduart

Hallo
der Normalenvektor ist richtig, soweit ich nachgerechnet habe auch deine Rechnung.
Gruß leduart

Bezug
        
Bezug
Satz von Gauß: aufg. b)
Status: (Frage) beantwortet Status 
Datum: 20:27 Mi 25.11.2015
Autor: Rebellismus

Die Fläche des körpers ist durch folgende Parametrisierung gegeben

> [mm]\phi(r,v)=\vektor{r*cosv \\ rsinv \\ r}[/mm] mit
> [mm]D=[0,2]\times[0,2\pi][/mm]

Diese Parametrisierung hat nur zwei variablen. Um das Volumenintegral anzuwenden, brauche ich aber eine Parametrisierung mit 3 variablen.

Was mache ich nun?

Bezug
                
Bezug
Satz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Mi 25.11.2015
Autor: chrisno

Zuerst die Gegenfrage: warum heißt es nun "die Fläche eines Körpers"? Das steht am Anfang nicht da.

Ich denke, Du sollst die gegebene Fläche zu einem Körper erweitern, also einen Deckel darauf setzen.
Dann kannst Du das Volumenintegral berechnen. Damit das ganze Sinn macht und DU nun nur mit dem Satz von Gauss zum Ziel kommst, ist eine spezielle Wahl der Deckelfläche notwendig. Entweder findest Du eine, für die das Oberflächenintegral null wird oder eine, bei der das Oberflächenintegral den gleichen Wert wie für den Unterteil ergibt. Eine andere Symmetrie gibt es vielleicht auch.

Bezug
                        
Bezug
Satz von Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 Do 26.11.2015
Autor: Rebellismus


> Zuerst die Gegenfrage: warum heißt es nun "die Fläche
> eines Körpers"? Das steht am Anfang nicht da.

Die Orginalaufgabe lautet ein bisschen anders. Ich habe sie ein bisschen verändert weil die Orginalaufgabe sich auf eine vorher gelöste Aufgabe bezog.

Folgende Information ist für die Aufgabe noch wichtig:

Eine Fläche sei durch [mm] 0\le z=\wurzel{x^2+y^2}\le{R} [/mm] gegeben mit R=2

Das ist der Mantel eines Kegels richtig? Die habe ich so parametrisiert:

[mm] \phi(r,v)=\vektor{r*cosv \\ r*sinv \\ r} [/mm] mit [mm] D=[0,2]\times[0,2\pi] [/mm]

Jetzt brauche ich eine Parametrisierung mit 3 variablen. Ein Kumpel hat foglende Parametrisierung gewählt


[mm] \phi(r,v,z)=\vektor{r*cosv \\ r*sinv \\ z} [/mm] mit [mm] r\in[0,z], v\in[0,2\pi] [/mm] und [mm] z\in[0,2] [/mm]


Die Parametrisierung beschreibt ebenfalls den Mantel eines Kegels oder? Die beiden Parametrisierung sind identisch oder?
oder ist hier der "Deckel" mit drauf?

Bezug
                                
Bezug
Satz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 01:29 Fr 27.11.2015
Autor: leduart

Hallo
die Parametrisierung mit dem z ergibt doch wenn für alle z r fest ist bzw von 0 bis r läuft eien Zylinder.
du brauchst zwar ein dz aber die nz läuft von 0 bis r, wenn es dir klarer wird kannst du alle r durch z ersetzen mit hier r(z)=z weil es ein rechtwinkliger Kegel ist.
Wenn du das Volumen ausrechnest hast du Kreisscheiben vom Radius z mit der Fläche [mm] \pir^2 [/mm] und der Dicke dz  die werden dann von z=0 bis r integriert.
Gruß leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]