matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSatz von Dirichlet
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Satz von Dirichlet
Satz von Dirichlet < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Dirichlet: Frage zum Beweis
Status: (Frage) beantwortet Status 
Datum: 12:41 Mi 08.07.2009
Autor: Deuterinomium

Aufgabe
Satz von Dirichlet:

Sei [mm] $f:\mathbb{T}\longrightarrow \mathbb{C}$ [/mm] stückweise stetig differenzierbar, [mm] d.\,h. [/mm] es gebe eine Zerlegung [mm] $-\pi=\tau_0<\tau_1<\ldots<\tau_{m+1}=\pi$ [/mm] des Intervalls [mm] $[-\pi,\pi]$ [/mm] so, dass sich [mm] $f|_{]\tau_j,\tau_{j+1}[}$ [/mm] für jedes [mm] $j=0,1,\ldots,m$ [/mm] zu einer stetig differenzierbaren Funktion auf [mm] $[\tau_j,\tau_{j+1}]$ [/mm] fortsetzen läßt . Für [mm] $t\in[-\pi,\pi]$ [/mm] bezeichne [mm] $f(t\pm0)$ [/mm] den einseitigen Grenzwert [mm] $$f(t\pm0):=\lim_{\tau\rightarrow 0 \\ \tau>0}f(t\pm\tau).$$ [/mm] Dann gilt: [mm] $$\lim_{N\rightarrow \infty} S_Nf(t)=\frac{f(t+0)+f(t-0)}{2}.$$ [/mm]
Ist $f$ stetig im Punkte $t$, so folgt insbesondere [mm] $$\lim_{N\rightarrow \infty} [/mm] S_Nf(t)=f(t).$$

Also, wie schon erwähnt (in einer anderen Diskussion) muss ich ein Seminar vorbereiten und da versteh ich ein Paar Dinge nicht!

Dieser Beweis des obigen Satzes ist ein Beispiel dafür:

Beweis:

Wir setzen im Satz von Dini [mm] $$A:=\frac{f(t+0)+f(t-0)}{2}.$$ [/mm] Für $s>0$ ist dann
[mm] $\frac{1}{s}\left(\frac{f(t+s)+f(t-s)}{2}-A\right)=\frac{1}{2}\left[\frac{f(t+s)+f(t-s)}{s}-\frac{f(t+0)+f(t-0)}{s}\right]=\frac{1}{2}\left[\frac{f(t+s)-f(t+0)}{s}-\frac{f(t-0)-f(t-s)}{s}\right]$ [/mm]
Da $f$ stückweise stetig differenzierbar ist, existieren für [mm] $s\rightarrow [/mm] 0$ die Grenzwerte von
[mm] $$\frac{f(t+s)-f(t+0)}{s} \quad \text{ bzw. } \quad \frac{f(t-0)-f(t-s)}{s},$$ [/mm]
und stimmen mit der rechtsseitigen Ableitung $f'(t+0)$ bzw. der linksseitigen Ableitung $f'(t-0)$ von $f$ im Punkte $t$ überein. Damit ist der Integrand
[mm] $$g(s):=\left|\frac{f(t+s)+f(t-s)}{2}-A\right|\frac{1}{s}$$ [/mm]
stetig in $0$

Hier ist meine erste Frage: Wieso ist g dann stückweise stetig?
Muss ich dafür nicht zeigen, dass [mm] $\lim_{s\rightarrow 0}g(s)=g(0)$ [/mm] aber gezeigt hab ich doch nur, dass [mm] $\lim_{s\rightarrow 0}g(s)$ [/mm] existiert oder?


, [mm] d.\,h. [/mm] mit $f$ ist auch $g$ stückweise stetig. Ferner gilt

[mm] $\int_0^{\pi} g(s)ds<\infty$ [/mm]

Hier ist meine zweite Frage: Wie komm ich auf diese Aussage?

Kann mir da jemand behilflich sein?

Gruß Frank

        
Bezug
Satz von Dirichlet: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Mi 08.07.2009
Autor: fred97


> Satz von Dirichlet:
>  
> Sei [mm]$f:\mathbb{T}\longrightarrow \mathbb{C}$[/mm] stückweise
> stetig differenzierbar, [mm]d.\,h.[/mm] es gebe eine Zerlegung
> [mm]$-\pi=\tau_0<\tau_1<\ldots<\tau_{m+1}=\pi$[/mm] des Intervalls
> [mm]$[-\pi,\pi]$[/mm] so, dass sich [mm]$f|_{]\tau_j,\tau_{j+1}[}$[/mm] für
> jedes [mm]$j=0,1,\ldots,m$[/mm] zu einer stetig differenzierbaren
> Funktion auf [mm]$[\tau_j,\tau_{j+1}]$[/mm] fortsetzen läßt . Für
> [mm]$t\in[-\pi,\pi]$[/mm] bezeichne [mm]$f(t\pm0)$[/mm] den einseitigen
> Grenzwert [mm]f(t\pm0):=\lim_{\tau\rightarrow 0 \\ \tau>0}f(t\pm\tau).[/mm]
> Dann gilt: [mm]\lim_{N\rightarrow \infty} S_Nf(t)=\frac{f(t+0)+f(t-0)}{2}.[/mm]
>  
> Ist $f$ stetig im Punkte $t$, so folgt insbesondere
> [mm]\lim_{N\rightarrow \infty} S_Nf(t)=f(t).[/mm]
>  Also, wie schon
> erwähnt (in einer anderen Diskussion) muss ich ein Seminar
> vorbereiten und da versteh ich ein Paar Dinge nicht!
>  
> Dieser Beweis des obigen Satzes ist ein Beispiel dafür:
>  
> Beweis:
>  
> Wir setzen im Satz von Dini [mm]A:=\frac{f(t+0)+f(t-0)}{2}.[/mm]
> Für $s>0$ ist dann
> [mm]\frac{1}{s}\left(\frac{f(t+s)+f(t-s)}{2}-A\right)=\frac{1}{2}\left[\frac{f(t+s)+f(t-s)}{s}-\frac{f(t+0)+f(t-0)}{s}\right]=\frac{1}{2}\left[\frac{f(t+s)-f(t+0)}{s}-\frac{f(t-0)-f(t-s)}{s}\right][/mm]
>  Da [mm]f[/mm] stückweise stetig differenzierbar ist, existieren
> für [mm]s\rightarrow 0[/mm] die Grenzwerte von
>  [mm]\frac{f(t+s)-f(t+0)}{s} \quad \text{ bzw. } \quad \frac{f(t-0)-f(t-s)}{s},[/mm]
>  
> und stimmen mit der rechtsseitigen Ableitung [mm]f'(t+0)[/mm] bzw.
> der linksseitigen Ableitung [mm]f'(t-0)[/mm] von [mm]f[/mm] im Punkte [mm]t[/mm]
> überein. Damit ist der Integrand
>  [mm]g(s):=\left|\frac{f(t+s)+f(t-s)}{2}-A\right|\frac{1}{s}[/mm]
>  stetig in [mm]0[/mm]
>  
> Hier ist meine erste Frage: Wieso ist g dann stückweise
> stetig?
> Muss ich dafür nicht zeigen, dass [mm]\lim_{s\rightarrow 0}g(s)=g(0)[/mm]
> aber gezeigt hab ich doch nur, dass [mm]\lim_{s\rightarrow 0}g(s)[/mm]
> existiert oder?


g ist zunächst in s = 0 nicht definiert, aber es ex. [mm]\lim_{s\rightarrow 0}g(s)[/mm]. Setze also

   g(0):= [mm]\lim_{s\rightarrow 0}g(s)[/mm]

Dann ist g in 0 stetig. g ist nun stückweise stetig, weil f stückweise stetig ist.




>  
> , [mm]d.\,h.[/mm] mit [mm]f[/mm] ist auch [mm]g[/mm] stückweise stetig. Ferner gilt
>  
> [mm]\int_0^{\pi} g(s)ds<\infty[/mm]
>  
> Hier ist meine zweite Frage: Wie komm ich auf diese
> Aussage?


Da g nur höchsten endlich viele Unstetigkeitsstellen hat, ist g Riemannintegrierbar über [0, [mm] \pi] [/mm]


FRED




>  
> Kann mir da jemand behilflich sein?
>  
> Gruß Frank


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]