matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenSatz über implizite Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Satz über implizite Funktionen
Satz über implizite Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz über implizite Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Di 23.06.2009
Autor: MaRaQ

Aufgabe
Sei [mm]f(x,y) = x^5 + 5x^4 - 16y^2[/mm] , [mm]M = \{(x,y) \in \IR^2 : f(x,y) = 0\}[/mm]. Zeigen Sie mit Hilfe des Satzes über implizite Funktionen, dass die Gleichung [mm]f(x,y) = 0[/mm] in allen Punkten [mm](x,y) \not= 0[/mm] lokal nach x oder y aufgelöst werden kann.
Versuchen Sie (z.B. mit Hilfe der lokalen Auflösungen) so viel über die Menge M herauszubekommen, das Sie sie skizzieren können. Ist M eine Untermannigfaltigkeit?

Wenn ich den Satz über implizite Funktionen richtig verstehe, so muss ich nun die quadratische Teilmatrix der Jacobi-Matrix bestimmen, die die partiellen Ableitungen der Funktion nach der y-Variablen enthalten.
Da wir uns allerdings im [mm]\IR^2[/mm] befinden, erhalte ich eine 1x1-"Matrix" mit dem Eintrag:
[mm]\bruch{\partial f}{\partial y}(x_0 , y_0 ) = -32y[/mm]
Wenn diese "Matrix" invertierbar ist im Punkt [mm](x_0 , y_0 )[/mm], so existieren offene Umgebungen U von [mm]x_0[/mm] und V von [mm]y_0[/mm] und eine eindeutige stetig differenzierbare Abbildung [mm]y: U \subset \IR^2 \to V \subset \IR^2[/mm] mit [mm]y(x_0) = y_0[/mm] , so dass [mm]f(x,y(x)) = 0[/mm] für alle [mm]x \in U_0.[/mm]

Die oben errechnete Matrix ist invertierbar für y [mm] \not= [/mm] 0 mit Inverser Matrix [mm](\bruch{1}{-32y})[/mm]

Damit habe ich die Umkehrbarkeit gezeigt, allerdings weniger scharf als gefordert. Gefordert ist Umkehrbarkeit für alle (x,y) ungleich 0, bei mir bisher nur Umkehrbarkeit für alle (x,y) ungleich (x,0).

Wo ist der (Denk-)Fehler?

Zum zweiten Teil: Hier reicht doch, zu zeigen, dass M eine nicht-leere, offene Teilmenge des [mm]\IR^2[/mm] ist, oder?
Vorausgesetzt natürlich, ich finde genügend Informationen...

        
Bezug
Satz über implizite Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Di 23.06.2009
Autor: MathePower

Hallo MaRaQ,

> Sei [mm]f(x,y) = x^5 + 5x^4 - 16y^2[/mm] , [mm]M = \{(x,y) \in \IR^2 : f(x,y) = 0\}[/mm].
> Zeigen Sie mit Hilfe des Satzes über implizite Funktionen,
> dass die Gleichung [mm]f(x,y) = 0[/mm] in allen Punkten [mm](x,y) \not= 0[/mm]
> lokal nach x oder y aufgelöst werden kann.
>  Versuchen Sie (z.B. mit Hilfe der lokalen Auflösungen) so
> viel über die Menge M herauszubekommen, das Sie sie
> skizzieren können. Ist M eine Untermannigfaltigkeit?
>  Wenn ich den Satz über implizite Funktionen richtig
> verstehe, so muss ich nun die quadratische Teilmatrix der
> Jacobi-Matrix bestimmen, die die partiellen Ableitungen der
> Funktion nach der y-Variablen enthalten.
> Da wir uns allerdings im [mm]\IR^2[/mm] befinden, erhalte ich eine
> 1x1-"Matrix" mit dem Eintrag:
>  [mm]\bruch{\partial f}{\partial y}(x_0 , y_0 ) = -32y[/mm]
>  Wenn
> diese "Matrix" invertierbar ist im Punkt [mm](x_0 , y_0 )[/mm], so
> existieren offene Umgebungen U von [mm]x_0[/mm] und V von [mm]y_0[/mm] und
> eine eindeutige stetig differenzierbare Abbildung [mm]y: U \subset \IR^2 \to V \subset \IR^2[/mm]
> mit [mm]y(x_0) = y_0[/mm] , so dass [mm]f(x,y(x)) = 0[/mm] für alle [mm]x \in U_0.[/mm]
>  
> Die oben errechnete Matrix ist invertierbar für y [mm]\not=[/mm] 0
> mit Inverser Matrix [mm](\bruch{1}{-32y})[/mm]
>  
> Damit habe ich die Umkehrbarkeit gezeigt, allerdings
> weniger scharf als gefordert. Gefordert ist Umkehrbarkeit
> für alle (x,y) ungleich 0, bei mir bisher nur Umkehrbarkeit
> für alle (x,y) ungleich (x,0).
>
> Wo ist der (Denk-)Fehler?
>  


Vor ein paar Tagen gab es hier diese Aufgabe schon einmal.


> Zum zweiten Teil: Hier reicht doch, zu zeigen, dass M eine
> nicht-leere, offene Teilmenge des [mm]\IR^2[/mm] ist, oder?
>  Vorausgesetzt natürlich, ich finde genügend
> Informationen...


Gruß
MathePower

Bezug
                
Bezug
Satz über implizite Funktionen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Di 23.06.2009
Autor: MaRaQ

Danke, der andere Beitrag war sehr hilfreich. Irgendwie scheint dieser Denkfehler in der Vorlesung "hausgemacht" zu sein, wenn ich diese doch sehr kleine Stichprobe mal verallgemeinern darf. ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]