matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesSatz über implizite Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Satz über implizite Funktion
Satz über implizite Funktion < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz über implizite Funktion: Verständnis
Status: (Frage) beantwortet Status 
Datum: 12:26 Di 19.03.2013
Autor: EvelynSnowley2311

Huhu zusammen,

ich wiederhole grade ein bisschen und blicke bei diesem Satz nicht durch.

Sei U x V [mm] \to \IR^n [/mm] eine stetig differenzierbare Abbildung, U [mm] \in \IR^m [/mm] , V [mm] \in \IR^n [/mm] . Die Jacobimatrix besteht aus zweil Teilmatrizen.

Erfüllt [mm] (x_0,y_0) \in [/mm] U x V die Gleichung [mm] F(x_0,y_0) [/mm] = 0 und ist die zweite Teilmatrix [mm] \bruch{\delta F}{\delta y} [/mm] im Punkt [mm] (x_0,y_0) [/mm] invertierbar, dann existieren offene Umgebungen [mm] U_0 (x_0) [/mm] und [mm] V_0 (y_0) [/mm] sowie eine eindeutig differenzierbare Abbildung mit [mm] f(x_0) [/mm] = [mm] y_0 [/mm] so, dass F(x,f(x)) = 0 für alle x [mm] \in U_0 [/mm] für alle x aus [mm] U_0 [/mm] gilt.

Kann man das irgendwie umgangsprachlich formulieren, was dort eigentlich passiert?

Also ich gehe hin und untersuche meine Funktion, einfacherheitshalber f(x,y) und gucke als erste, in welchen Punkten die Funktion f(x,y) = 0 erfüllt. Gegebenermaßen haben meine x und y - Werte Intervalle von wo bis wo sie gehen.

Ist diese Bedingung erfüllt, leite ich nach y ab (wieso eigentlich nicht F(f(y),y) ? ) und gucke, ob meine Matrix bzw Gleichung in dem Punkt, in dem f(x,y) =0 ist, ungleich 0 ist. Un in diesen Punkten existiert dann diese stetig differenzierbare Abbildung, die obiges erfüllt und das wars?

        
Bezug
Satz über implizite Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Di 19.03.2013
Autor: fred97

Schau mal hier:

http://www.staff.uni-oldenburg.de/daniel.grieser/wwwlehre/Eigene_Skripten/grieser-analysis2-r907.pdf

Ab Seite 139 wird das Thema "implizit def. Funktionen" seht schön erklärt und motiviert.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]