matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSattelpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Sattelpunkt
Sattelpunkt < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sattelpunkt: Frage
Status: (Frage) beantwortet Status 
Datum: 10:24 Mi 16.02.2005
Autor: TWA

Guten Morgen,

ich habe bei folgender Aufgabe ein Problem:

[mm] f(x)=\bruch{a}{x-1}-\bruch{1}{x^2} [/mm]      (mit [mm] a\ne0) [/mm]

Wie ist a zu wählen, wenn f(x) einen Wendepunkt mit waagerechter Tangente haben soll?

Das heißt wohl man solle a so wählen, daß f(x) einen Sattelpinkt hat. Es müssen also folgende hinreichenden Bedingungen erfüllt werden:

[mm] f'(x_{0})=0, f''(x_{0})=0, f'''(x_{0})\ne0 [/mm]

Dann habe ich mal die ersten drei Ableitungen gebildet:

[mm] f'(x)=\bruch{-a}{(x-1)^2}+\bruch{2}{x^3} [/mm]

[mm] f''(x)=\bruch{-2a}{(x-1)^3}-\bruch{6}{x^4} [/mm]

[mm] f'''(x)=\bruch{8a}{(x-1)^3}+\bruch{24}{x^5} [/mm]

Wie sollte ich jetzt weiterverfahren? Durch ausprobieren a herausfinden? Und wie gehe ich mit dem zweiten Term um: Der hat bei Null doch eine Definitionslücke. Wie kann der den [mm] f'(x_{0})=0 [/mm] haben?

Helft mir bitte!!!

        
Bezug
Sattelpunkt: 2 Unbekannte 2 Gleichungen
Status: (Antwort) fertig Status 
Datum: 10:54 Mi 16.02.2005
Autor: mathemaduenn

Hallo TWA,

> [mm]f'(x_{0})=0, f''(x_{0})=0, f'''(x_{0})\ne0 [/mm]

Hier hast Du 2 Gleichungen aufgeschrieben. Mit deinen berechneten Ableitungen erhälst Du so ein Gleichungssystem für 2 Unbekannte [mm] x_{0} [/mm] und a . Das hat i.A. mehrere (oder keine) Lösungen. Da müsstest du dann noch schauen welche Lösung die Bedingung [mm] f'''(x_0)\ne0 [/mm] erfüllt. Ob die Funktionen (Gleichungen) für alle [mm] x_0 [/mm] definiert sind ist dabei unerheblich. Hauptsache es gibt eine Lösung.
gruß
mathemaduenn

Bezug
        
Bezug
Sattelpunkt: Korrekturen: Ableitungen
Status: (Antwort) fertig Status 
Datum: 11:05 Mi 16.02.2005
Autor: Loddar

Hallo TWA!

Hier noch einige kleine Korrekturen Deiner Ableitungen ...

[mm]f_a'(x)=\bruch{-a}{(x-1)^2}+\bruch{2}{x^3}[/mm]   [ok]


[mm]f_a''(x)=\bruch{\red{+}2*a}{(x-1)^3}-\bruch{6}{x^4}[/mm]


[mm]f_a'''(x)=\bruch{\red{-6}*a}{(x-1)^{\red{4}}}+\bruch{24}{x^5}[/mm]


Loddar


Bezug
                
Bezug
Sattelpunkt: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:56 Mi 16.02.2005
Autor: TWA

Danke für die korrekturen bei den Ableitungen,  aber mit dem Lösungsvorschlag von mathemaduenn bin ich etwas überfordert: Ich finds nicht ganz einfach, so ein gleichungssystem zu lösen. Ist das der einzige Lösungsweg?

Bezug
                        
Bezug
Sattelpunkt: x0 vorgegeben ??
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:45 Mi 16.02.2005
Autor: Loddar

.

Gibt es denn keine Angabe / Vorgabe bezüglich der Stelle [mm] $x_0$, [/mm] für die ein Sattelpunkt vorliegen soll?

Ansonsten Nullstellen von [mm] $f_a'$ [/mm] und [mm] $f_a''$ [/mm] ermitteln und anschließend (den ermittelten x-Wert) gleichsetzen ...


Loddar


Bezug
                                
Bezug
Sattelpunkt: leider nicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Mi 16.02.2005
Autor: TWA

Ist es nichts weiter angegeben, leider.

Ich werde jetzt mal deinen Lösungsvorschlag ausprobieren....


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]