matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikSätze allgemeingültig?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Logik" - Sätze allgemeingültig?
Sätze allgemeingültig? < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sätze allgemeingültig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:24 Do 25.04.2013
Autor: Lu-

Aufgabe
Sei [mm] \sigma [/mm] = [mm] \{ +, R,S,P \} [/mm] , wobei + ein zweistelliges Funktionssymbol ist, R und S nullstellige Relationssymbole sind und P ein einstelliges Relationssymbol.
Sind die [mm] \sigma- [/mm]  Sätze logisch allgemeingültig?

[mm] \phi_1: [/mm]
[mm] \neg \wedge [/mm] R [mm] \neg \exists x_0 [/mm] P [mm] x_0 [/mm]

[mm] \phi_2: [/mm]
[mm] \neg \wedge [/mm] R [mm] \neg \neg \wedge [/mm] S [mm] \neg [/mm] R

Hallo
In semiformaler Sprache (so dass auch personen die aufgabe verstehen können ohne first order sprache)

[mm] \phi_1: [/mm]
R -> [mm] \exists x_o P(x_0) [/mm]

[mm] \phi_2: [/mm]
R -> (S->R)

Ich würde sagen [mm] \phi_2 [/mm] ist allgemeingültig. Wenn R erfüllt ist dann ist doch egal ob S erfüllt ist oder nicht es folgt R ist erfüllt ;)

[mm] \phi_1 [/mm] denke ich ist nicht allgemeingültig.
Grundmenge : Nicht positive Reelle Zahlen
P.. [mm] \IR_+ [/mm] (was wahr ist wenn x>0, falsch wenn [mm] x\le [/mm] 0  )
R.. Aussage
Auch wenn die Aussage wahr ist folgt dass es kein x gibt in der grundmenge für die, die Relation erfüllt ist.

Was sagt ihr?
LG

        
Bezug
Sätze allgemeingültig?: Antwort
Status: (Antwort) fertig Status 
Datum: 07:24 Fr 26.04.2013
Autor: tobit09

Hallo Lu-,


> [mm]\phi_1:[/mm]
>  [mm]\neg \wedge[/mm] R [mm]\neg \exists x_0[/mm] P [mm]x_0[/mm]
>  
> [mm]\phi_2:[/mm]
>  [mm]\neg \wedge[/mm] R [mm]\neg \neg \wedge[/mm] S [mm]\neg[/mm] R

>  In semiformaler Sprache (so dass auch personen die aufgabe
> verstehen können ohne first order sprache)
>  
> [mm]\phi_1:[/mm]
>  R -> [mm]\exists x_o P(x_0)[/mm]

>  
> [mm]\phi_2:[/mm]
>  R -> (S->R)

[ok]

  

> Ich würde sagen [mm]\phi_2[/mm] ist allgemeingültig.
> Wenn R
> erfüllt ist dann ist doch egal ob S erfüllt ist oder
> nicht es folgt R ist erfüllt ;)

[ok]

(Unter der Annahme, dass hier keine exakte Begründung anhand der Definitionen verlangt wird.)


> [mm]\phi_1[/mm] denke ich ist nicht allgemeingültig.

[ok]

>  Grundmenge : Nicht positive Reelle Zahlen

Ok, kannst du nehmen. Dann musst du eine passende [mm] $\sigma$-Struktur [/mm] mit dieser Grundmenge [mm] $M:=\IR_{\le0}$ [/mm] erklären. Dazu gehört eine Angabe, wie sie $R$, $S$, $P$ und $+$ interpretieren soll.

>  P.. [mm]\IR_+[/mm] (was wahr ist wenn x>0, falsch wenn [mm]x\le[/mm] 0  )

Die Interpretation von $P$ muss eine Teilmenge von [mm] $M^1$ [/mm] sein.

>  R.. Aussage

Die Interpretation von $R$ muss eine Teilmenge von [mm] $M^0=\{()\}$ [/mm] sein (also entweder [mm] $\emptyset$ [/mm] (was einer falschen Aussage entspricht) oder [mm] $M^0$ [/mm] (was einer wahren Aussage entspricht)).

>  Auch wenn die Aussage wahr ist folgt dass es kein x gibt
> in der grundmenge für die, die Relation erfüllt ist.

Du suchst ja eine [mm] $\sigma$-Struktur, [/mm] in der der Satz [mm] $\phi_1$ [/mm] falsch ist. Wie müssen also die Wahrheitswerte von $R$ und von [mm] $\exists x_0 Px_0$ [/mm] in dieser Struktur aussehen? Es bleibt nur eine mögliche Wahl der Interpretationen von $R$ und $P$ in der Struktur.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]