matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisSDE
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "stochastische Analysis" - SDE
SDE < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

SDE: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:00 Sa 02.10.2021
Autor: Thomas_Aut

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Liebes Forum,

ich hoffe euch gehts gut!

Ich betrachte ein System aus 4 gewöhnlichen, nichtlinearen Differentialgleichungen:

$$(I) : \frac{dV_{m}}{dt} =  [-\overline{g_{Na}}m^3h(V_m - E_{Na})-\overline{g_K} n^4(V_m-E_K) - \overline{g_L} (V_m -E_L)+I]/c_m$$

\bigskip

$$(II-IV): \frac{dx}{dt} = (\alpha_x (1-x) - \beta_x x) \hspace{0.3cm},  x=m,n,h$$

wobei $\overline{g_{Na}$ etc einfach konstanten sind. I ist ein externer strom, aber die Biophysik des Modelles ist auch nicht weiter wichtig. $\alpha , \beta$ sind experimentell bestimmte Funktionen die an erhobene Datan angepasst wurden. $E_L$ etc sind auch konstant.

wenn ich dieses System nun durch $k*X_t \sim N(0,1)$ störe (also additiv in Gleichung (I) - also $X_t$ ändert in jedem Zeitschritt dt seinen Wert (k ist einfach ein Kontrollparameter für die Intensität)- dann entsteht

$$(I) : dV_{m} =  ([-\overline{g_{Na}}m^3h(V_m - E_{Na})-\overline{g_K} n^4(V_m-E_K) - \overline{g_L} (V_m -E_L)+I]/c_m)dt + kX_t dt$$

also rechts haben wir jetzt weisses rauschen mit det. Integrator, was interpretiert werden kann als:

$$(I) : dV_{m} =  ([-\overline{g_{Na}}m^3h(V_m - E_{Na})-\overline{g_K} n^4(V_m-E_K) - \overline{g_L} (V_m -E_L)+I]/c_m)dt + kdB_t$$

weil man kann sich weißes Rauschen ja als die Ableitung der BB vorstellen (im Sinne von Distributionen, da sie ja im klassischen Sinne nirgends diffbar ist).

Das heißt es entsteht eine SDG.

Frage1:

Ich würde nun gerne wissen wie sich die deterministische Lösung durch den Rauschterm verändert. Wenn man das System vereinfacht indem man m,n,h als konstant annimmt, dann ist das ja ein Ornstein Uhlenbeck Prozess, der bekannte Varianz hat und somit kann man recht rasch eine Abschätzung machen.

m,n,h sind aber nicht konstant, d.h. ich brauche Ito-Theorie? Kennt ihr da eine gute Möglichkeit u $V_{det}$ versus $V_{stoch}$ abzuschätzen? also den Impact von $kX_t$ auf das System rauszukriegen?

Frage2:

Lösen kann man das System nur numerisch, also geschlossene Lösung gibt es keine --> dafür verwende ich das implizite Eulerverfahren und nun frage ich mich: kann ich das gestörte System auch mit implizit Euler lösen? oder muss ich zwangsläufig auf ein Lösungsverfahren a la Milstein etc umsteigen?

Herzlichen Dank und LG



        
Bezug
SDE: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mo 04.10.2021
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
SDE: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Mo 04.10.2021
Autor: Thomas_Aut

bitte die Frage um eine Woche verlängern.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]