matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenRunge-Kutta-Formeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentialgleichungen" - Runge-Kutta-Formeln
Runge-Kutta-Formeln < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Runge-Kutta-Formeln: Verständnis
Status: (Frage) beantwortet Status 
Datum: 22:42 Mo 24.11.2008
Autor: jumape

Aufgabe
Man entwickle ein explizites Runge-Kutta-Verfahren der Ordnung 3 mit 3 Funktionsauswertungen pro Schritt.

Also wenn ich das richtig verstanden habe, gilt es folgendes Gleichungssystem zu erfüllen:
[mm] O(h^3)=\bruch{y(x+h)-y(x)}{h}-\summe_{i=0}^{n}\gamma_ik_i(x,y(x),h) [/mm]
Dabei ist
[mm] k_n(x,y,h)=f(x+\alpha_nh, y+h\summe_{j=0}^{n-1}\beta_{nj}k_j(x,y,h)) [/mm]

Hier ist als Tip angegeben man solle z(x+h) und [mm] k_i(x,y,h) [/mm] nach h entwickeln. Mit z bin ich ja noch gut klargekommen bei Taylor aber bei [mm] k_i [/mm] soll man da wirklich Taylor im Mehrdimensionalen anwenden? Oder habe ich da was falsch verstanden?

Es wäre nett wenn mir jemand helfen könnte.

        
Bezug
Runge-Kutta-Formeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Mo 24.11.2008
Autor: zahllos

Hallo,

ich fürchte du kommst um eine Taylorentwicklung von [mm] K_i [/mm] nach beiden Variablen nicht herum. Ich werde mal drüber nachdenken, ob es auch einfacher geht (denn die Herleitung der Runge-Kutta-Formeln ist immer ien ziemliches Durcheinander von Ableitunen) und melde mich morgen Abend wieder.


Bezug
        
Bezug
Runge-Kutta-Formeln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Di 25.11.2008
Autor: zahllos

Hallo,

das RKF dritter Ordnung lässt sich folgendermaßen herleiten:

y(x+h) = [mm] y+hf+\frac{h^2}{2}(f_x+f_yf)+\frac{h^3}{6}(f_{xx}+2f_{xy}f+f_xf_y+f_{yy}f+f_y^2f)+O(h^4) [/mm]

(wobei ich rechts die Argumente weggelassen habe).

Nun setzt man:

[mm] K_1= [/mm] f(x; y)

[mm] K_2= f(x+ha_2; y+hb_{21}K_1) [/mm] = [mm] f+ha_2f_x+hb_{21}f_yf+h^2a_2^2f_{xx}+2h^2a_2b_{21}f_{xy}f+h^2b_{21}^2f_{yy}f^2+O(h^3) [/mm]

[mm] K_3=f(x+ha_3; y+hb_{31}K_1+hb_{32}K_2)=f+ha_3f_x+hb_{31}f_yf+hb_{32}f_yf+h^2a_2b_{32}f_xf_y+h^2b_{21}b_{32}f_y^2f+O(h^3) [/mm]

und: [mm] y(x+h)=y+h(g_1K_1+g_2K_2+g_3K_3)+O(h^4) [/mm]

setzt man für [mm] K_i [/mm] die obigen Ausdrücke ein und vergleicht die Koeffizienten vor den einzelnen partiellen Ableitungen erhält man folgendes Gleichungssystem:

[mm] g_1+g_2+g_3=1 [/mm]

[mm] a_2g_2+a_3g_3=\frac{1}{2} [/mm]

[mm] b_{21}g_2+b_{31}g_3+b_{32}g_3=\frac{1}{2} [/mm]

[mm] a_2^2g_2=\frac{1}{6} [/mm]

[mm] a_2b_{21}g_2=\frac{1}{6} [/mm]

[mm] a_2b_{32}g_3=\frac{1}{6} [/mm]

[mm] b_{21}^2g_2=\frac{1}{6} [/mm]

[mm] b_{21}b_{32}g_3=\frac{1}{6} [/mm]

Jede Lösung dieses Gleichungssystems legt ein Verfahren dritter Ordnung fest. Eine Lösung ist z.B.:

[mm] g_1=\frac{1}{6} [/mm]    

[mm] g_2=\frac{4}{6} [/mm]    

[mm] g_3=\frac{1}{6} [/mm]

[mm] a_1=\frac{1}{2} [/mm]    

[mm] a_2=1 [/mm]

[mm] b_{21}=\frac{1}{2} [/mm]    

[mm] b_{31}=-1 [/mm]    

[mm] b_{32}=2 [/mm]

die sog. "einfache Kutta-Regel".


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]