matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeRückwärtsstabilität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Numerik linearer Gleichungssysteme" - Rückwärtsstabilität
Rückwärtsstabilität < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rückwärtsstabilität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Sa 09.11.2013
Autor: Zero_112

Aufgabe
[mm] A\in\IR^{2x2}, b\in\IR^2 [/mm]

a)Schreiben Sie ein Programm in MATLAB, das die Lösung des Systems Ax=b nach der Cramerschen Regel findet.

b)Zeigen Sie durch ein numerisches Beispiel, das die Berechnung der Lösung mit der Cramerschen Regel nicht rückwärtsstabil ist.



Hallo.

a) habe ich bereits fertig:

function x = cramer(A,b)
x=zeros(2,1);
d=A(1,1)*A(2,2)-A(1,2)*A(2,1);
x(1)=(A(2,2)*b(1)-A(1,2)*b(2))/d;
x(2)=(-A(2,1)*b(1)+A(1,1)*b(2))/d;
end

Das klappt auch.

b) Hier weiß ich leider nicht so genau wie ich vorgehen soll. Mir ist klar, dass ich eine schlecht konditionierte Matrix nehmen muss. Ich dachte an sowas: [mm] A=\pmat{ 1 & 1 \\ 1 & 0.99 }, cond_\infty(A) [/mm] = [mm] ||A||_\infty ||A^{-1}||_\infty [/mm] = 2*200=400

Wie hatten allerdings nie eine Definition des Begriffes "rückwärtsstabil", daher habe ich mir eine herausgesucht:
[]http://mitschriebwiki.nomeata.de/Numerik1Latex.pdf.5.pdf(Seite 7, Rückwärtsanalyse), allerdings weiß ich irgendwie nicht wie ich das hier in meiner Aufgabe realisieren soll, weil mir nicht klar ist, was die x, die da in den Normen stehen hier in meiner aufgabe sein sollen. Es sind doch eigentlich Eingabewerte oder? Ich habe aber 2 Eingabewerte, nämlich A und b und ich weiß nicht, wie ich da dieses rho berechnen soll...Ich glaube ich verstehe die Definition nicht ganz.




        
Bezug
Rückwärtsstabilität: nicht funktionierender Link
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Sa 09.11.2013
Autor: Al-Chwarizmi


> Wie hatten allerdings nie eine Definition des Begriffes
> "rückwärtsstabil", daher habe ich mir eine herausgesucht:

> []http://mitschriebwiki.nomeata.de/Numerik1Latex.pdf.5.pdf


Dieser Link funktioniert (wenigstens bei mir)  nicht !

LG


Bezug
                
Bezug
Rückwärtsstabilität: korrigiert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Sa 09.11.2013
Autor: Loddar

Hallo!


Ich habe den Link oben korrigiert. Nun solltest Du nicht mehr im Nirvana landen. ;-)


Gruß
Loddar

Bezug
                        
Bezug
Rückwärtsstabilität: Grüße von nirgendwo
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:51 So 10.11.2013
Autor: Al-Chwarizmi


> Ich habe den Link oben korrigiert. Nun solltest Du nicht
> mehr im Nirvana landen. ;-)


Hallo Loddar,

hab mich jetzt hier im Nirvana ein wenig umgeschaut,
und es gefällt mir eigentlich ausnehmend gut ...
Ich denke, dass ich von jetzt an so periodisch hin
und her pendeln werde.

Vorerst wünsche ich euch allen einen schönen Winter !

LG     ;-)   Al

Bezug
        
Bezug
Rückwärtsstabilität: Antwort
Status: (Antwort) fertig Status 
Datum: 07:32 So 10.11.2013
Autor: Al-Chwarizmi


> [mm]A\in\IR^{2x2}, b\in\IR^2[/mm]
>  
> a)Schreiben Sie ein Programm in MATLAB, das die Lösung des
> Systems Ax=b nach der Cramerschen Regel findet.
>
> b)Zeigen Sie durch ein numerisches Beispiel, das die
> Berechnung der Lösung mit der Cramerschen Regel nicht
> rückwärtsstabil ist.
>  
>
> Hallo.
>  
> a) habe ich bereits fertig:
>
> function x = cramer(A,b)
>  x=zeros(2,1);
>  d=A(1,1)*A(2,2)-A(1,2)*A(2,1);
>  x(1)=(A(2,2)*b(1)-A(1,2)*b(2))/d;
>  x(2)=(-A(2,1)*b(1)+A(1,1)*b(2))/d;
>  end
>  
> Das klappt auch.
>  
> b) Hier weiß ich leider nicht so genau wie ich vorgehen
> soll. Mir ist klar, dass ich eine schlecht konditionierte
> Matrix nehmen muss. Ich dachte an sowas: [mm]A=\pmat{ 1 & 1 \\ 1 & 0.99 }, cond_\infty(A)[/mm]
> = [mm]||A||_\infty ||A^{-1}||_\infty[/mm] = 2*200=400
>  
> Wie hatten allerdings nie eine Definition des Begriffes
> "rückwärtsstabil", daher habe ich mir eine herausgesucht:
> []http://mitschriebwiki.nomeata.de/Numerik1Latex.pdf.5.pdf(Seite
> 7, Rückwärtsanalyse), allerdings weiß ich irgendwie
> nicht wie ich das hier in meiner Aufgabe realisieren soll,
> weil mir nicht klar ist, was die x, die da in den Normen
> stehen hier in meiner aufgabe sein sollen. Es sind doch
> eigentlich Eingabewerte oder? Ich habe aber 2 Eingabewerte,
> nämlich A und b und ich weiß nicht, wie ich da dieses rho
> berechnen soll...Ich glaube ich verstehe die Definition
> nicht ganz.


Hallo Zero_112 ,

es handelt sich wirklich um eine ziemlich komplizierte
Definition. Ich denke, dass der Eingabevektor effektiv
wirklich ganz A und b enthalten müsste. Er hätte also
insgesamt 6 Einzelkomponenten.
Ich denke aber, dass es zum Zweck des Findens eines
Gegenbeispiels genügen würde, wenn man annimmt,
dass zwar die Werte der Matrix A nicht durch Störungen
beeinflusst sind, sondern nur die 2 Komponenten des
Vektors b . Falls man schon bei dieser Betrachtung ein
Beispiel vorlegen kann, das die Instabilität belegt, dann
könnte es ja damit nur noch schlimmer werden, wenn
auch noch weitere Störfaktoren dazu kommen können.

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]