matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenRückwärts in der Zeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentialgleichungen" - Rückwärts in der Zeit
Rückwärts in der Zeit < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rückwärts in der Zeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Di 21.04.2009
Autor: Zerwas

Aufgabe
Häufig können moderne Integratoren nur vorwärts in der Zeit integrieren, d.h. sie verlangen eine Endzeit [mm] t_f, [/mm] die größer ist, als die Anfangszeit [mm] t_0. [/mm] Gegeben sei nun das Anfangswertproblem
[mm] \dot{y}(t) [/mm] = f(t, y(t)),   [mm] y(t_0) [/mm] = [mm] y_0, [/mm]
wobei der Wert [mm] y(t_f) [/mm] für [mm] t_f [/mm] < [mm] t_0 [/mm] gesucht wird. Formuliere das Problem adäquat um.

Ich habe mir Überlegt, dass es ja reichen sollte aus t einfach -t zu machen und dann zu haben:
[mm] \dot{y}(-t) [/mm] = f(t, y(-t)),   [mm] y(-t_0) [/mm] = [mm] y_0, [/mm]
damit kann ich dann einfach rückwärts integrieren.

Funktioniert das so? oder ist das zu simpel und ich habe einen Harken übersehen?

Ich habe diese Frage auf keinem anderen Forum auf einer anderen Internetseite gestellt.

Gruß und Danke
Zerwas

        
Bezug
Rückwärts in der Zeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Di 21.04.2009
Autor: MathePower

Hallo Zerwas,

> Häufig können moderne Integratoren nur vorwärts in der Zeit
> integrieren, d.h. sie verlangen eine Endzeit [mm]t_f,[/mm] die
> größer ist, als die Anfangszeit [mm]t_0.[/mm] Gegeben sei nun das
> Anfangswertproblem
>  [mm]\dot{y}(t)[/mm] = f(t, y(t)),   [mm]y(t_0)[/mm] = [mm]y_0,[/mm]
>  wobei der Wert [mm]y(t_f)[/mm] für [mm]t_f[/mm] < [mm]t_0[/mm] gesucht wird.
> Formuliere das Problem adäquat um.
>  Ich habe mir Überlegt, dass es ja reichen sollte aus t
> einfach -t zu machen und dann zu haben:
>  [mm]\dot{y}(-t)[/mm] = f(t, y(-t)),   [mm]y(-t_0)[/mm] = [mm]y_0,[/mm]
>  damit kann ich dann einfach rückwärts integrieren.
>  
> Funktioniert das so? oder ist das zu simpel und ich habe
> einen Harken übersehen?


Du mußt hier schon alle Variablen transformieren, auch [mm]y'\left(t\right)[/mm].


>  
> Ich habe diese Frage auf keinem anderen Forum auf einer
> anderen Internetseite gestellt.
>  
> Gruß und Danke
>  Zerwas


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]