matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSignaltheorieRücktransformation s/...
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Signaltheorie" - Rücktransformation s/...
Rücktransformation s/... < Signaltheorie < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rücktransformation s/...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Do 13.03.2014
Autor: Hing

Aufgabe
[mm] G_{(s)}=\bruch{Cs}{(3/2)RCs+1} [/mm]

Ich möchte gerne die oben genannte Übertragungsfunktion rückttransformieren. Leider weiss ich nicht wie.

Wenn ich den Faltungssatz verwenden möchte, dann muss ich wissen wie s rücktransformiert wird. Bisher habe ich nur in einem Buch gefunden, das es einen Diracimpuls bewirkt. Das sagt mir auch Matlabs ilaplace(). Jedoch wird in den Laplace-Tabellen auch angegeben, das 1 im Bildbereich einen Diracimpuls bewirkt.

Oder bewirkt ein einfaches s eine Ableitung, irgendwie sowas?:

[mm] g_{(t)}=dg_{(t)}/-\bruch{2}{3RC}e^{-2/(3RC)} [/mm]

Wenn im Zähler höhere Polynome stehen würden, dann könnte ich wenigstens eine Partialbruchzerlegung anwenden...

Allgemein könnte ich auch Fragen, wie man eine Übertragungsfunktion rücktransformiert, die im Zähler ein Polynom 1. Ordnung hat?

Fragen über Fragen.

        
Bezug
Rücktransformation s/...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:29 Fr 14.03.2014
Autor: Hing

Ich habe herausgefunden das es ein [mm] DT_1-Glied [/mm] ist. Es wird sogar hier im Matheraum das Problem angesprochen. Leider verstehe ich die Lösung nicht, da eine Polynomdivision empfohlen wird, da der Zählergrad höher als der Nennergrad sein soll, obwohl [mm] \bruch{s}{s+1}. [/mm]

Bezug
        
Bezug
Rücktransformation s/...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:31 Fr 14.03.2014
Autor: Hing

Ich habe die Lösung gefunden. Unter anderem hier im Forum. Es war wieder infinit infinit der wusste was Sache ist. [anbet]

Kurz: Es ist die Polynomdivision- auch wenn der Zählergrad gleich dem Nennergrad ist.

Bezug
        
Bezug
Rücktransformation s/...: Weiter rechnen
Status: (Antwort) fertig Status 
Datum: 17:13 Fr 14.03.2014
Autor: Infinit

Hallo Hing,
Du bist schon auf dem richtigen Weg. Eine Parialbruchzerlegung liefert Dir den konstanten Term, da hier Zähler und Nenner gleichen Grad besitzen. Das ergibt rücktransformiert einen entsprechend gewichteten Deltaimpuls.
Dein Ausdruck kann doch geschrieben werden als
[mm]  \bruch{Cs}{\bruch{3}{2}RCs+1} = \bruch{2}{3R} - \bruch{\bruch{2}{3R}}{\bruch{3}{2}RCs+1} [/mm]
Der zweite Term entspricht dann vom Typ her nach einer Multiplikation dem Ausdruck [mm] \bruch{1}{s+a} [/mm], wozu eine abklingende e-Funktion im Zeitbereich gehört.
Viel Spaß beim Ausrechnen,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]