matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikRücktransformation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Regelungstechnik" - Rücktransformation
Rücktransformation < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rücktransformation: offener/geschlossener Regelkr.
Status: (Frage) beantwortet Status 
Datum: 13:17 Mi 06.01.2010
Autor: HenningS

Aufgabe
Berechnen sie den Endwert t->unendlich für y(t) für den offenen und geschlossenen Regelkreis (PT2 Strecke) mit u(t)=u0*sigma(t) für P und PI

Hallo,
meine Idee war für den offenen Regelkreis das PI, sowie PT2-Glied in
... diesen Text hier...
Reihe zu schalten.
Also [mm] (Kp+\bruch{Kp}{Ti*s}) [/mm] * [mm] (\bruch{K}{1+2d*T*s+T²*s²} [/mm]

mit gegebenen Parametern ergab sich [mm] \bruch{50*(1+\bruch{2}{s})}{1+0,1s+0,04s²} [/mm]

Diesen Term wollte ich Rücktransformieren und t gegen unendlich laufen lassen, allerdings erhalte ich beim Versuch der Partialbruchzerlegung komplexe Nullstellen für das Nenner Polynom.
Ist die Aufgabe auch anders Lösbar?
Vielen Dank im vorraus;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rücktransformation: Ein Tipp
Status: (Antwort) fertig Status 
Datum: 13:38 Mi 06.01.2010
Autor: Infinit

Hallo Henning,
zunächst mal [willkommenvh].
Deine Aufgabe kannst Du so angehen, wie von Dir beschrieben, es geht jedoch auch einfacher, da man den Grenzwert für t gegen Unendlich auch aus der Laplacetransformierten berechnen kann.
Im Laplacebereich hast Du beim offenen Regelkreis eine Hintereinanderschaltung von Regler und Regelstrecke, die Laplace-Transfomierten werden multipliziert. Allerdings glaube ich, dass Du die Laplace-Transformierte des Eingangssignals vergessen hast. Das Sigma soll ja wohl den Einheitssprung bezeichnen und für diesen gilt im Laplace-Bereich die Korrespondenz [mm] \bruch{1}{s}[/mm].
Das alles multiplikativ verknüpft ergibt dann für die Laplace-Transformierte des Ausgangssignals
$$ Y(s) = [mm] \bruch{1}{s}\cdot [/mm] PT2(s) [mm] \cdot [/mm] P(s) $$
Für die Berechnung des Grenzwertes gegen Unendlich im Zeitbereich kann man dann den Endwertsatz anwenden:
$$ [mm] \lim_{t \rightarrow \infty} [/mm] f(t) = [mm] \lim_{s \rightarrow 0} [/mm] s F(s) $$
Du siehst, das Eingangssignal kürzt sich mit dem s in der obigen Gleichung weg und Du musst nur noch die Übertragungsfunktion des offenen bzw. später des geschlossenen Regelkreises hinschreiben und darin s gegen 0 laufen lassen.
Viel Spaß dabei,
Infinit  

Bezug
                
Bezug
Rücktransformation: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:51 Mi 06.01.2010
Autor: HenningS

Danke;)
habe jetzt rausbekommen, dass für PI Y(s) gegen unendlich geht.
Für P-Glied gegen einen Konstanten Wert. (50)

Beim Geschlossenen Regelkreis erhalte ich für das PGlied [mm] \bruch{50}{51} [/mm]
und für das PI Glied 1





Bezug
                        
Bezug
Rücktransformation: Okay
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Mi 06.01.2010
Autor: Infinit

Ja, diese Ergebnisse machen Sinn und zeigen, dass man einen I-Anteil braucht, um komplett ausregeln zu können.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]