matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRücksubstitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Rücksubstitution
Rücksubstitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rücksubstitution: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:44 So 01.02.2009
Autor: Realbarca

Hallo zusammen,

bei einer Aufgabe geht es mir nur um die Rücksubstitution.
Die Bildung der Stammfunktion durch erstige Substitution und anschließender partieller Integration ist mir einleuchtend.

Aber wenn eine Funktion keine Grenzen hat, dann soll man ja rücksubtituieren. Aber wie funktioniert dass bei dieser Funktion.



Also die gesamte Stammfunktion lautet:

F(x)= [mm] \bruch{e^{-u}sinu-e^{-u}cosu}{2} [/mm]

Substituiert haben wir den Ausdruck: u=lnx

Bei der Rücksubstutition hat der Prof aber folgendes hingeschrieben.

F(x)= [mm] \bruch{sin(lnx)^2-cos(lnx)}{2x} [/mm]


Also, die Lösung ist zwar richtig, aber mir war nicht klar, warum aus
sin(u) [mm] -->sin(lnx)^2 [/mm] wird und warum aus 2 -->2x wird.

Danke im Voraus!!




        
Bezug
Rücksubstitution: ursprüngliche Funktion?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 So 01.02.2009
Autor: Loddar

Hallo Realbarca!


Wie lautet denn die ursprüngliche Funktion, welche integriert werden soll?


Gruß
Loddar


Bezug
        
Bezug
Rücksubstitution: umgeformt
Status: (Antwort) fertig Status 
Datum: 11:54 So 01.02.2009
Autor: Loddar

Hallo Realbarca!


Warum hier am Ende das Quadrat beim Sinus steht, erklärt sich mir nicht. Stand da vielleicht ein [mm] $\sin\left(u^{\red{2}}\right)$ [/mm] ?


Ansonsten wurde wie folgt umgeformt swoei die Beziehung [mm] $\red{u \ = \ \ln(x)} [/mm] \ \ \ [mm] \gdw [/mm] \ \ \ [mm] \blue{x \ = \ e^u}$ [/mm] verwendet:

[mm] $$\bruch{e^{-u}*\sin(u)-e^{-u}*\cos(u)}{2} [/mm] \ = \ [mm] \bruch{e^{-u}*\left[\sin(u)-\cos(u)\right]}{2} [/mm] \ = \ [mm] \bruch{\sin(\red{u})-\cos(\red{u})}{2*\blue{e^u}} [/mm] \ = \ [mm] \bruch{\sin[\red{\ln(x)}]-\cos[\red{\ln(x)}]}{2*\blue{x}}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Rücksubstitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:15 So 01.02.2009
Autor: Realbarca

Sorry, hätte die zu integrierende Funktion, euch auch mitteilen müssen.
Also zu integrieren war:

[mm] \integral_{}^{}{f(x) dx}= \bruch{cos(lnx)}{x^2} [/mm]

Dann haben wir den Ausdruck: ln(x)=u gesetzt.

Ich hoffe, dass hilft dir weiter. Die Ermittlung der Stammfunktion mit Hilfe der Substitution und der partiellen Integration war zwar recht aufwendig. Aber hab dass verstanden, nur leider kann ich mir die Rücksubstituion nicht erschließen.

Danke schonmal

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]