matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesRotationsvolumina
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - Rotationsvolumina
Rotationsvolumina < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationsvolumina: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Mi 17.03.2010
Autor: silfide

Aufgabe
Durch Rotation eines Kreises mit dem Mittelpunkt M(0;b) und dem Radius r mit b [mm] \ge [/mm] r, um die 1. Achse entsteht ein Torus, dessen Volumen zu berechnen ist. Berechne dazu die Volumina derjenigen Körper, die bei Rotation der oberen bzw. unteren Kreislinie um die 1. Achse entstehen.


Hallo Leute,

also so muss das fertige Gebilde aussehen:

[Dateianhang nicht öffentlich]


um die Aufgabenstellung zu verstehen, habe ich versucht das Gebilde in einen Koordinatensystem zu packen, komme aber scheinbar nicht ganz klar, was genau gemeint ist.(Weil so kann das nicht hinhauen!)

[Dateianhang nicht öffentlich]

Hat jemand eine Idee??

(Geht nicht um die Berechnung - nur um das Verständnis der Aufgabenstellung)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Rotationsvolumina: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Mi 17.03.2010
Autor: Zwerglein

Hi, sifide,

> Durch Rotation eines Kreises mit dem Mittelpunkt M(0;b) und
> dem Radius r mit b [mm]\ge[/mm] r, um die 1. Achse entsteht ein
> Torus, dessen Volumen zu berechnen ist. Berechne dazu die
> Volumina derjenigen Körper, die bei Rotation der oberen
> bzw. unteren Kreislinie um die 1. Achse entstehen.
>  
>
> Hallo Leute,
>  
> also so muss das fertige Gebilde aussehen:
>  
> [Dateianhang nicht öffentlich]

Naja: Das Bild muss man sich natürlich um 90° gedreht denken,
denn der Kreis soll ja um die x-Achse rotieren.
Also: stehender Autoreifen, nicht liegender.

Nun berechnest Du zunächst das Volumen des Körpers, der entsteht, wenn Du die obere Hälfte des Kreises um die x-Achse rotieren lässt, also die Funktion y= [mm] +\wurzel{r^{2}-x^{2}}+b. (V_{1}) [/mm]

Dann berechnest Du das Volumen des Körpers, der entsteht, wenn Du die untere Hälfte des Kreises um die x-Achse rotieren lässt, also die Funktion y= [mm] -\wurzel{r^{2}-x^{2}}+b. (V_{2}) [/mm]

Am Ende muss Du noch V = [mm] V_{1} [/mm] - [mm] V_{2} [/mm] berechnen und Du hast den gesuchten Torus.

mfG!
Zwerglein

Bezug
                
Bezug
Rotationsvolumina: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Mi 17.03.2010
Autor: silfide

Danke.

Allerdings, wenn ich den Torus einfach nur um 90° drehe, ist mir unklar wie die untere Kreislinie definiert ist.

Deshalb kam ich ja auf die Idee, das anders zu machen - wobei mir dann die Berechnung nicht einleuchten würde...

Bezug
                        
Bezug
Rotationsvolumina: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Mi 17.03.2010
Autor: Zwerglein

Hi, silfide,

> Allerdings, wenn ich den Torus einfach nur um 90° drehe,
> ist mir unklar wie die untere Kreislinie definiert ist.

Naja: Gemeint ist doch, dass Du keinen ganzen Kreis um die x-Achse rotieren lässt, sondern (nacheinander) 2 Halbkreise.

Lässt Du den oberen Halbkreis rotieren, kriegst Du sozusagen ein altsumerisches Rad, also ein Rad, aus einer ganzen Scheibe,
zwar außen schön abgerundet, aber eben kein Reifen" wie wir ihn heute kennen.

Lässt Du den unteren Halbreis rotieren, kriegst Du genau den Teil des Rades, den Du sozusagen "rausbohren" oder "raussägen" musst, um einen Reifen draus zu machen.

Jetzt klar?

mfG!
Zwerglein

Bezug
                                
Bezug
Rotationsvolumina: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Mi 17.03.2010
Autor: silfide

Soweit war es mir ja klar - muss so aussehen:

[Dateianhang nicht öffentlich]

Mir fehlt aber irgendwie der Radius des inneren/untere Halbkreises. Oder ist der b? Das quasi r+b=R ist und R der Radius des gesamten Torus (also äußere/obere Kreislinie)??

Ich glaube, ich drücke mich nicht vernünftig aus...

Oder weißt du, was ich meine??

Dateianhänge:
Anhang Nr. 3 (Typ: jpg) [nicht öffentlich]
Bezug
                                        
Bezug
Rotationsvolumina: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mi 17.03.2010
Autor: metalschulze

[Dateianhang nicht öffentlich]
Ich schätze mal das sollte wohl eher so aussehen, ein Rotationsvolumen (oberer Halbkreis) erzeugt dir eine Scheibe , die komplett innen gefüllt ist. Um den Torus zu erhalten musst du das Rotationsvolumen das unteren Halbkreises abziehen.
Gruss Christian

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Rotationsvolumina: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mi 17.03.2010
Autor: Al-Chwarizmi


> Durch Rotation eines Kreises mit dem Mittelpunkt M(0;b) und
> dem Radius r mit b [mm]\ge[/mm] r, um die 1. Achse entsteht ein
> Torus, dessen Volumen zu berechnen ist. Berechne dazu die
> Volumina derjenigen Körper, die bei Rotation der oberen
> bzw. unteren Kreislinie um die 1. Achse entstehen.


Falls die Aufgabe so gemeint war, wie sie da steht, ist die
Antwort ganz einfach: das Volumen ist gleich Null, weil bei
der Rotation eines Kreisbogens um eine Achse eine Fläche
vom Volumen Null erzeugt wird.
Die gesamte Torusfläche hat deshalb auch das Volumen
Null.

Richtig sollte es in der Aufgabenstellung heißen:

Berechne dazu zunächst die Volumina derjenigen Körper, die
bei der Rotation der beiden Gebiete

    $\ [mm] G_1\ [/mm] =\ [mm] \{\ (x,y)\ |\ -r\le x\le r\ \wedge\ 0\le y\le b+\sqrt{r^2-x^2}\ \}$ [/mm]

    $\ [mm] G_2\ [/mm] =\ [mm] \{\ (x,y)\ |\ -r\le x\le r\ \wedge\ 0\le y\le b-\sqrt{r^2-x^2}\ \}$ [/mm]

um die x-Achse entstehen.


LG     Al-Chw.

    

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]