Rotationsvolumen Graph < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Der Graph zu f(x)= [mm] \wurzel {2-x^2} [/mm] rotiert um die 1.Achse. Den so entstanden Rotationskörper kann man sich auch durch Rotation einer Fläche vorstellen. Skizziere die Fläche und berechne das Volumen des Körpers. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich bräuchte eine Schritt für Schritt Erklärung, wie ich überhaupt an die Aufgabe ran gehen muss und was ich dann tun muss. Skizzieren bekomme ich hin mit einer Wertetabelle aber mit dem berechnen bin ich überfordert.
danke
Eigene Ideen:
Ich habe die Werte für den Abschnitt von 0 - 1 errechnet,
(0/1,4142) ; (0,1/1,4106) ; (0,2/1,4) ; (0,3/1,382) ; (0,4/1,3564) ; (0,5/1,3228) ; (0,6/1,2806) ; (0,7/1,2288) ; (0,8/1,1661) ; (0,9/1,0908) ; (1/1)
|
|
|
|
> Der Graph zu f(x)= [mm]\wurzel {2-x^2}[/mm] rotiert um die 1.Achse.
> Den so entstanden Rotationskörper kann man sich auch durch
> Rotation einer Fläche vorstellen. Skizziere die Fläche und
> berechne das Volumen des Körpers.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Ich bräuchte eine Schritt für Schritt Erklärung, wie ich
> überhaupt an die Aufgabe ran gehen muss und was ich dann
> tun muss. Skizzieren bekomme ich hin mit einer Wertetabelle
> aber mit dem berechnen bin ich überfordert.
>
> danke
>
> Eigene Ideen:
>
> Ich habe die Werte für den Abschnitt von 0 - 1 errechnet,
> (0/1,4142) ; (0,1/1,4106) ; (0,2/1,4) ; (0,3/1,382) ;
> (0,4/1,3564) ; (0,5/1,3228) ; (0,6/1,2806) ; (0,7/1,2288) ;
> (0,8/1,1661) ; (0,9/1,0908) ; (1/1)
Na, es wäre wohl besser, zuerst einmal die Nullstellen und den Definitionsbereich dieser Funktion zu bestimmen. Nullstellen sind die Lösungen der Gleichung [mm] $\sqrt{2-x^2}=0$, [/mm] bzw. quadriert [mm] $2-x^2=0$, [/mm] also [mm] $x_1=-\sqrt{2}$ [/mm] und [mm] $x_2=+\sqrt{2}$. [/mm] Definitionsbereich ist [mm] $D_f [/mm] := [mm] [-\sqrt{2};+\sqrt{2}]$. [/mm] Bei $x=0$ ist der Funktionswert [mm] $\sqrt{2}$. [/mm] Vielleicht erinnerst Du Dich an den Satz von Pythagoras? - Wie auch immer: der Graph dieser Funktion ist ein Halbkreis mit Radius [mm] $r=\sqrt{2}$ [/mm] und Mittelpunkt $(0|0)$. Somit könnte man das Volumen des entstehenden Rotationskörpers auch nach der Formel [mm] $V=\frac{4\pi}{3}r^3$ [/mm] berechnen.
Wenn Du aber unbedingt ein Integral ausrechen möchtest, dann kannst Du Dir vorstellen, dass man diesen Rotationskörper in "infinitesimale" salamischeibchenartigen Teilvolumina $dV$, mit Radius [mm] $|\sqrt{2-x^2}|$ [/mm] und Dicke $dx$, zerlegt und deren Volumina zum gesuchten Volumen aufsummiert: dies macht gerade das Integral
[mm]V=\int_{-\sqrt{2}}^{+\sqrt{2}}\;dV=\int_{-\sqrt{2}}^{+\sqrt{2}}\pi \Big(\sqrt{2-x^2}\Big)^2\; dx=\int_{-\sqrt{2}}^{+\sqrt{2}}\pi (2-x^2)\; dx=\ldots[/mm]
|
|
|
|