Rotationskörper mit festem Vol < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Die Funktion f hat folgende Eigenschaft:
Rotiert der Graph von f über dem Intervall [0;1] um die x-Achse, dann hat der entstehende Rotationskörper den Rauminhalt [mm] \pi [/mm] !
Geben sie soviele Möglichkeiten der Funktion f an wie möglich! |
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Rotationskoerper-mit-festem-Volumen-bestimmen-Integral-berechnen
Für einen Ansatz siehe Link...
Die erste Funktion,die mir für f(x) einfällt ist 1,denn 1² is ja auch 1 und desshalb ist auch das Integral von 0 bis 1 gleich 1,somit passt Pii mal 1= Pii....
Aber es gibt ja noch viele weitere Lösungen, nur wie komme ich dadrauf (möglicherweise auch rechnerisch?)?
Danke für jede Lösung/Gedankenhilfe
|
|
|
|
Hallo shicterminater,
> Die Funktion f hat folgende Eigenschaft:
>
>
> Rotiert der Graph von f über dem Intervall [0;1] um die
> x-Achse, dann hat der entstehende Rotationskörper den
> Rauminhalt [mm]\pi[/mm] !
>
>
>
> Geben sie soviele Möglichkeiten der Funktion f an wie
> möglich!
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>
> http://www.onlinemathe.de/forum/Rotationskoerper-mit-festem-Volumen-bestimmen-Integral-berechnen
>
> Für einen Ansatz siehe Link...
>
> Die erste Funktion,die mir für f(x) einfällt ist 1,denn 1²
> is ja auch 1 und desshalb ist auch das Integral von 0 bis 1
> gleich 1,somit passt Pii mal 1= Pii....
>
>
>
>
>
> Aber es gibt ja noch viele weitere Lösungen, nur wie komme
> ich dadrauf (möglicherweise auch rechnerisch?)?
>
Bilde die Ableitung nach x von
[mm]\pi \integral_{0}^{1}{\left(f(x)\right)^{2} \ dx}=\pi[/mm]
Dann bekommst Du eine Bedingung, die erfüllt sein muss.
>
> Danke für jede Lösung/Gedankenhilfe
Gruß
MathePower
|
|
|
|
|
Aufgabe | Bilde die Ableitung nach x von
$ [mm] \pi \integral_{0}^{1}{\left(f(x)\right)^{2} \ dx}=\pi [/mm] $
Dann bekommst Du eine Bedingung, die erfüllt sein muss. |
erst einmal danke für deine schnelle antwort. doch kann ich dein arbeitsauftrag/denkanstoß zum einen nicht nachvollziehen geschweigedenn ausführen. Wie soll ich davon eine Ableitung bilden? Könntest du es mir zeigen und etwas genauer erklären?
|
|
|
|
|
Hallo shicterminater,
> Bilde die Ableitung nach x von
>
> [mm]\pi \integral_{0}^{1}{\left(f(x)\right)^{2} \ dx}=\pi[/mm]
>
> Dann bekommst Du eine Bedingung, die erfüllt sein muss.
> erst einmal danke für deine schnelle antwort. doch kann ich
> dein arbeitsauftrag/denkanstoß zum einen nicht
> nachvollziehen geschweigedenn ausführen. Wie soll ich davon
> eine Ableitung bilden? Könntest du es mir zeigen und etwas
> genauer erklären?
Betrachte wir die Stammfunktion
[mm]F\left(x\right)= \pi \integral_{}^{}{\left(f(x)\right)^{2} \ dx}[/mm]
Die Ableitung nach x ist natürlich wieder der Integrand
Ich weiss jetzt nicht, ob Du die Leibniz-Regel kennst.
Es ist
[mm]\pi \integral_{0}^{1}{\left(f(x)\right)^{2} \ dx}=\pi [/mm]
abgeleitet nach x:
[mm]\pi \integral_{0}^{1}{2*f\left(x)\right) *f'\left(x\right) \ dx}=0 [/mm]
Das wird wieder integriert und ergibt dann eine Bedingung,
die erfüllt sein muß, damit
[mm]\pi \integral_{0}^{1}{\left(f(x)\right)^{2} \ dx}=\pi [/mm]
Gruß
MathePower
|
|
|
|
|
Aufgabe | $ [mm] \pi \integral_{0}^{1}{2\cdot{}f\left(x)\right) \cdot{}f'\left(x\right) \ dx}=0 [/mm] $
Das wird wieder integriert und ergibt dann eine Bedingung,
die erfüllt sein muß |
Also danke das du mir mit der Ableitung weitergeholfen hast,aber komme ich auch mit dem nächsten Schritt nicht weiter, habe es halt noch nie gemacht -.-
Zudem würde es mir zum Verständnis weiterhelfen, warum ich ableiten muss etc...
mfg
|
|
|
|
|
Hallo shicterminater,
> [mm]\pi \integral_{0}^{1}{2\cdot{}f\left(x)\right) \cdot{}f'\left(x\right) \ dx}=0[/mm]
>
> Das wird wieder integriert und ergibt dann eine Bedingung,
> die erfüllt sein muß
> Also danke das du mir mit der Ableitung weitergeholfen
> hast,aber komme ich auch mit dem nächsten Schritt nicht
> weiter, habe es halt noch nie gemacht -.-
>
> Zudem würde es mir zum Verständnis weiterhelfen, warum ich
> ableiten muss etc...
Ich glaube, daß was ich das gemacht habe, nicht so ohne weiteres geht.
Deshalb vergiss das Geschriebene von mir besser und halte Dich an das,
was leduart geschrieben hat.
>
> mfg
Gruß
MathePower
|
|
|
|
|
Status: |
(Korrektur) fundamentaler Fehler | Datum: | 17:51 Mo 08.12.2008 | Autor: | leduart |
Hallo Mathepower
Du kannst ein bestimmtes Integral sicher nicht nach der ja willkürlichen Integrationsvariablen ableiten. Ausser dem Ergebnis 0 ist dabei nichts richtig!
Gruss leduart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:22 So 07.12.2008 | Autor: | leduart |
Hallo
anderer Weg: setz einfach mal [mm] a*x^b [/mm] in das Integral ein und bestimme dann a,b so dass es hinkommt. da kriegst du schon mal unendlich viele fkt. dann geht noch [mm] a*e^{bx} [/mm] oder a*sinx .
Wenn du noch andere fkt hast, die du gut integrieren kannst dann die auch. sie sollten zwischen 0 und 1 monoton sein. und zu jeder fkt tuts natürlich auch die negative
Dein f(x)=x ist übrigens nicht ganz richtig! [mm] x^2 [/mm] von 0 bis 1 integriert ergibt 1/3 und nicht 1: du musst also schon a*x nehmen und a anpassen! also wirklich deine ausgedachte Funktion integrieren!
Gruss leduart
|
|
|
|
|
Aufgabe | setz einfach mal $ [mm] a\cdot{}x^b [/mm] $ in das Integral ein |
tut mir leid das ich grade etwas auf dem schlauch stehe,aber könntest du für mich mal ein beispiel geben.wir sind in dem thema ganz neu drin und ich weis nicht ganz wie du das meinst...
danke
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:44 So 07.12.2008 | Autor: | leduart |
Hallo
Beispiel [mm] f(x)=a*x^2
[/mm]
[mm] \integral_{0}^{1}{(ax^2)^2 dx}=\integral_{0}^{1}{a^2x^4 dx}=
[/mm]
[mm] a^2*x^5/5|_0^1=a^2/5 [/mm] -0
das soll 1 sein also [mm] a^2/5=1 a^2=5 a=\wurzel{5}
[/mm]
so, jetzt nimm statt [mm] x^2 x^b [/mm] und mach dasselbe.
dann nimm [mm] a*e^x [/mm] mach wieder dasselbe usw.
Du kannst fast jede in 01 monotone fkt mit nem faktor versehen, so dass das Integral über ihr Quadrat 1 ergibt.
Gruss leduart.
|
|
|
|
|
Beispiel $ [mm] f(x)=a\cdot{}x^2 [/mm] $
$ [mm] \integral_{0}^{1}{(ax^2)^2 dx}=\integral_{0}^{1}{a^2x^4 dx}= [/mm] $
Bis dahin ist die Sache klar und einleuchtend...
$ [mm] a^2\cdot{}x^5/5|_0^1=a^2/5 [/mm] $ -0
diesen ganzen schritt verstehe ich nicht! vll zu schnell und für mich zu stark zusammengefasst. Vorallem die 5 mit der eins über 0 verstehe ich nicht. könntest du es vll einmal zeile für zeile aufschreiben ohne mehrere schritte gleichzeitig?
vielen vielen dank.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:03 Mo 08.12.2008 | Autor: | leduart |
Hallo
Wie integrierst du denn :
[mm] \integral_{0}^{1}{x^4 dx} [/mm] ?
und wie
[mm] \integral_{0}^{1}{a^2*x^4 dx}
[/mm]
und wie
[mm] \integral_{0}^{1}{x^{2r} dx} [/mm] mit [mm] 2r\ne-1
[/mm]
Wie integrierst du :
[mm] \integral_{0}^{1}{e^{bx} dx} [/mm] usw.
Das solltest du erstmal schreiben, denn langsamer kann ich das nicht!
Wenn du das nicht kannst: welche Funktionen kannst du integrieren?
Noch eine andere Möglichkeit ist mir eingefallen.
Nimm irgendeine Fkt die du ableiten kannst. sieh nach, ob die Ableitung positiv ist.
Beispiel: [mm] g(x)=e^{bx} g'(x)=(e^{bx})'=b*e^{bx}
[/mm]
jetzt nimm [mm] f(x)=\wurzel{g'(x)} f^2(x)=g'(x)
[/mm]
dann hast du das Integral
[mm] \integral_{0}^{1}{f^2(x) dx}=\integral_{0}^{1}{g'(x) dx}=g(1)-g(0)
[/mm]
und dann musst du den Parameter in der fkt nur noch so anpassen, dass sich 1 ergibt.
wieder mit dem Beispiel [mm] :g'=b*e^{bx} f=\wurzel{b}*e^{b*x/2}
[/mm]
[mm] g(1)-g(0)=e^b-e^0=e^b-1=1 [/mm] also [mm] e^b=2 [/mm] b=ln2
Vielleicht leuchtet dir das ein.
Gruss leduart
|
|
|
|