matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRotationsinvarianz Laplace
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Rotationsinvarianz Laplace
Rotationsinvarianz Laplace < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotationsinvarianz Laplace: Verständnisfrage
Status: (Frage) überfällig Status 
Datum: 22:05 Sa 17.05.2014
Autor: SiuNimTau

Aufgabe
Es gibt allerdings auch eine kurze, koordinatenfreie Herleitung für die O(n)-Invarianz des Laplace-Operator:
Sie benutzt, dass man [mm] \Delta [/mm] = div ° grad schreiben kann, wobei div und grad analog wie in [mm] \IR^3 [/mm] definiert sind.
Bezeichnet Df die Jakobi-Matrix von f, so ist für [mm] u:\IR^n [/mm] -> [mm] \IR [/mm]
grad u = [mm] (Du)^T [/mm]
bezüglich des Standardskalarproduktes (klar, wenn man die Komponenten von Du mit denen von grad u vergleicht).
Für ein F: [mm] \IR^n [/mm] -> [mm] \IR^n [/mm] ist dann
div F = tr(DF)
wobei tr die Spur, also die Summe über den Diagonalelementen von F bezeichnet.
Somit gilt:
[mm] \Delta [/mm] u = div grad u = [mm] tr(D(Du)^T) [/mm]
Ist nun v = u ° A wie oben, so gilt
Dv(x) = Du(Ax) ° A(x) => grad v(x) = [mm] A^T [/mm] grad u(Ax)
Nun erhält man
div grad v(x) = [mm] tr(D(A^T [/mm] grad u(Ax))) = [mm] tr(A^T [/mm] D(grad u)(Ax) A) = tr(A^(-1) D(grad u)(Ax) A) = tr(D(grad u)(Ax)) = div grad u (Ax) = [mm] \Delta [/mm] u (Ax)

Hallo zusammen,

das hier hab ich als Beweis für die Rotationsinvarianz des Laplace Operators gefunden.

Ich verstehe eigentlich alles, außer bei der Beweisführung am Ende das 2. Gleichheitszeichen. Das man [mm] $A^T$ [/mm] rausziehen kann, leuchtet mir ein und auch das das (Ax), aber woher kommt plötzlich das A??

Würde mich freuen, wenn mir jemand hilft, das zu verstehen.


        
Bezug
Rotationsinvarianz Laplace: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mo 19.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]