matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungRotation um y-Achse...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Rotation um y-Achse...
Rotation um y-Achse... < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotation um y-Achse...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Fr 09.11.2018
Autor: hase-hh

Aufgabe
Berechnen Sie das Volumen des Rotationskörpers mit

f(x) = 3x -2

bei Drehung um die y-Achse im Intervall y=1 bis y = 4.

Moin Moin,

zunächst bilde ich die Umkehrfunktion zu

f(x) = 3x - 2

x = 3y -2  

y = [mm] \bruch{1}{3}x [/mm] + [mm] \bruch{2}{3} [/mm]


aus  [mm] \pi*\integral_{1}^{4}{f(x)^2 dy} [/mm]

wird dann  [mm] \pi*\integral_{f(a)}^{f(b)}{y^2 dx} [/mm]


Die Grenzen würde ich dann so berechnen

f(1) = 3*1 -2 = 1

f(4) = 3*4 - 2 = 10

Leider scheint mir das nicht zu stimmen, da nach meiner Skizze, eine deutlich größere Fläche um die x-Achse rotiert, als um die y-Achse.


Wo ist da der Denkfehler?


Danke und Gruß!







        
Bezug
Rotation um y-Achse...: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Fr 09.11.2018
Autor: HJKweseleit


> Berechnen Sie das Volumen des Rotationskörpers mit
>
> f(x) = 3x -2
>
> bei Drehung um die y-Achse im Intervall y=1 bis y = 4.


Du kannst hier von Anfang an um die y-Achse rotieren lassen oder - wie du es vorhast - x- und y-Achsen vertauschen und die Umkehrfunktion nehmen.


Zur ersten Alternative: Statt wie bisher [mm] V=\pi \integral_{x_a}^{x_b}{(f(x))^2 dx} [/mm] zu bilden, gehst du über zu [mm] V=\pi \integral_{y_a}^{y_b}{x^2 dy} [/mm]  mit x = [mm] \bruch{1}{3}y [/mm] + [mm] \bruch{2}{3} [/mm]  (keine Umkehrfunktion, nur umstellen nach x!)

Du musst also x noch quadrieren und für die Grenzen 1 und 4 einsetzen.

Nun zu deinem Weg:


>  Moin Moin,
>  
> zunächst bilde ich die Umkehrfunktion zu
>
> f(x) = 3x - 2
>  
> x = 3y -2  
>
> y = [mm]\bruch{1}{3}x[/mm] + [mm]\bruch{2}{3}[/mm]
>  
>
> aus  [mm]\pi*\integral_{1}^{4}{f(x)^2 dy}[/mm]
>  
> wird dann  [mm]\pi*\integral_{f(a)}^{f(b)}{y^2 dx}[/mm]

Nicht ganz! Was du machst, ist keine Substitution , sondern eine Vertauschen von x- und y-Werten. Damit werden die vorhergehenden y-Grenzen nun zu x-Grenzen, also beibehalten:

V= [mm] \pi*\integral_{a}^{b}{y^2 dx} =\pi*\integral_{1}^{4}{(\bruch{1}{3}x + \bruch{2}{3})^2 dx} [/mm] und damit bekommst du genau mein obiges Integral, nur, dass die Buchstaben x und y gegeneinander vertauscht sind. Der Zahlenwert ist aber dann derselbe.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]