matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRotation des Gradienten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Rotation des Gradienten
Rotation des Gradienten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rotation des Gradienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Mi 04.05.2011
Autor: Theoretix

Aufgabe
Sei [mm] G\subset \IR^3 [/mm] ein Gebiet. Die Funktionen f,g: [mm] G\to \IR^3, \varphi: G\to \IR [/mm] seien hinreichend Glatt. Beweisen Sie:

[mm] rot\Delta\varphi=0 [/mm]

Hallo,

hier steht doch die hintereinander Ausführung des Nabla Operators [mm] \Delta=(\frac{\partial}{\partial x_1},\frac{\partial}{\partial x_2},\frac{\partial}{\partial x_3}) [/mm] und anschließend der Rotation davon.

Wendet man also zunächst [mm] \Delta [/mm] auf [mm] \varphi [/mm] an, erhält man:

[mm] \Delta\varphi=(\frac{\partial\varphi}{\partial x_1},\frac{\partial\varphi}{\partial x_2},\frac{\partial\varphi}{\partial x_3}), [/mm]

d.h. einen Vektor mit diesen 3 Komponenten. Nun berechnet man davon die Rotation und erhält:

[mm] \pmat{ \frac{\varphi}{\partial x_1\partial x_3} &- \frac{\partial\varphi}{\partial x_3\partial x_2} \\ \frac{\partial\varphi}{\partial x_3\x_1} & -\frac{\partial\varphi}{\partial x_1\partial x_3} \\ \frac{\partial\varphi}{\partial x_1\partial x_2} & - \frac{\partial\varphi}{\partial x_2\partial x_1} } [/mm]

und jetzt kann ich doch mit dem Satz von Schwarz argumentieren, der besagt:

[mm] \frac{\partial}{\partial x_i}frac{\partial}{\partial x_j}f(x_0)=\frac{\partial}{\partial x_j}\frac{\partial}{\partial x_i}f(x_0), [/mm]

also ist jeder Zeilenausdruck null [mm] \Rightarrow rot\Delta\varphi=0 [/mm]

Stimmt der Beweis so?

Gruß

        
Bezug
Rotation des Gradienten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Mi 04.05.2011
Autor: MathePower

Hall Theoretix,

> Sei [mm]G\subset \IR^3[/mm] ein Gebiet. Die Funktionen f,g: [mm]G\to \IR^3, \varphi: G\to \IR[/mm]
> seien hinreichend Glatt. Beweisen Sie:
>  
> [mm]rot\Delta\varphi=0[/mm]
>  Hallo,
>  
> hier steht doch die hintereinander Ausführung des Nabla
> Operators [mm]\Delta=(\frac{\partial}{\partial x_1},\frac{\partial}{\partial x_2},\frac{\partial}{\partial x_3})[/mm]
> und anschließend der Rotation davon.
>  
> Wendet man also zunächst [mm]\Delta[/mm] auf [mm]\varphi[/mm] an, erhält
> man:
>  
> [mm]\Delta\varphi=(\frac{\partial\varphi}{\partial x_1},\frac{\partial\varphi}{\partial x_2},\frac{\partial\varphi}{\partial x_3}),[/mm]
>  
> d.h. einen Vektor mit diesen 3 Komponenten. Nun berechnet
> man davon die Rotation und erhält:
>  
> [mm]\pmat{ \frac{\varphi}{\partial x_1\partial x_3} &- \frac{\partial\varphi}{\partial x_3\partial x_2} \\ \frac{\partial\varphi}{\partial x_3\x_1} & -\frac{\partial\varphi}{\partial x_1\partial x_3} \\ \frac{\partial\varphi}{\partial x_1\partial x_2} & - \frac{\partial\varphi}{\partial x_2\partial x_1} }[/mm]


Das ist wohl so gemeint:

[mm]\pmat{ \frac{\blue{\partial} \varphi}{\partial x_1\partial x_3} &- \frac{\partial\varphi}{\partial x_3\partial x_2} \\ \frac{\partial\varphi}{\partial x_3\blue{\partial} x_1} & -\frac{\partial\varphi}{\partial x_1\partial x_3} \\ \frac{\partial\varphi}{\partial x_1\partial x_2} & - \frac{\partial\varphi}{\partial x_2\partial x_1} }[/mm]


>  
> und jetzt kann ich doch mit dem Satz von Schwarz
> argumentieren, der besagt:
>  
> [mm]\frac{\partial}{\partial x_i}frac{\partial}{\partial x_j}f(x_0)=\frac{\partial}{\partial x_j}\frac{\partial}{\partial x_i}f(x_0),[/mm]


[mm]\frac{\partial}{\partial x_i}\frac{\partial}{\partial x_j}f(x_0)=\frac{\partial}{\partial x_j}\frac{\partial}{\partial x_i}f(x_0),[/mm]


>  
> also ist jeder Zeilenausdruck null [mm]\Rightarrow rot\Delta\varphi=0[/mm]
>  
> Stimmt der Beweis so?


Ja.


>  
> Gruß


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]